Spectroscopy and Scattering Studies Using Interpolated Ab Initio Potentials.

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Annual review of physical chemistry Pub Date : 2021-04-20 Epub Date: 2021-01-27 DOI:10.1146/annurev-physchem-090519-051837
Ernesto Quintas-Sánchez, Richard Dawes
{"title":"Spectroscopy and Scattering Studies Using Interpolated Ab Initio Potentials.","authors":"Ernesto Quintas-Sánchez,&nbsp;Richard Dawes","doi":"10.1146/annurev-physchem-090519-051837","DOIUrl":null,"url":null,"abstract":"<p><p>The Born-Oppenheimer potential energy surface (PES) has come a long way since its introduction in the 1920s, both conceptually and in predictive power for practical applications. Nevertheless, nearly 100 years later-despite astonishing advances in computational power-the state-of-the-art first-principles prediction of observables related to spectroscopy and scattering dynamics is surprisingly limited. For example, the water dimer, (H<sub>2</sub>O)<sub>2</sub>, with only six nuclei and 20 electrons, still presents a formidable challenge for full-dimensional variational calculations of bound states and is considered out of reach for rigorous scattering calculations. The extremely poor scaling of the most rigorous quantum methods is fundamental; however, recent progress in development of approximate methodologies has opened the door to fairly routine high-quality predictions, unthinkable 20 years ago. In this review, in relation to the workflow of spectroscopy and/or scattering studies, we summarize progress and challenges in the component areas of electronic structure calculations, PES fitting, and quantum dynamical calculations.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"72 ","pages":"399-421"},"PeriodicalIF":11.7000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-090519-051837","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

Abstract

The Born-Oppenheimer potential energy surface (PES) has come a long way since its introduction in the 1920s, both conceptually and in predictive power for practical applications. Nevertheless, nearly 100 years later-despite astonishing advances in computational power-the state-of-the-art first-principles prediction of observables related to spectroscopy and scattering dynamics is surprisingly limited. For example, the water dimer, (H2O)2, with only six nuclei and 20 electrons, still presents a formidable challenge for full-dimensional variational calculations of bound states and is considered out of reach for rigorous scattering calculations. The extremely poor scaling of the most rigorous quantum methods is fundamental; however, recent progress in development of approximate methodologies has opened the door to fairly routine high-quality predictions, unthinkable 20 years ago. In this review, in relation to the workflow of spectroscopy and/or scattering studies, we summarize progress and challenges in the component areas of electronic structure calculations, PES fitting, and quantum dynamical calculations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用插值从头算电位的光谱学和散射研究。
波恩-奥本海默势能面(Born-Oppenheimer potential energy surface, PES)自20世纪20年代问世以来,无论是在概念上还是在实际应用中的预测能力方面,都取得了长足的进步。然而,近100年后,尽管计算能力取得了惊人的进步,但与光谱学和散射动力学有关的最先进的第一性原理预测却令人惊讶地有限。例如,水二聚体(H2O)2,只有6个原子核和20个电子,对于束缚态的全维变分计算仍然是一个巨大的挑战,并且被认为是严格的散射计算所无法达到的。最严格的量子方法的标度极差是根本问题;然而,近似方法发展的最新进展为相当常规的高质量预测打开了大门,这在20年前是不可想象的。本文就光谱学和/或散射研究的工作流程,总结了电子结构计算、PES拟合和量子动力学计算等组成领域的进展和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
期刊最新文献
New Materials for Photoelectrochemical Energy Conversion. Advances in Transmission Electron Microscopy to Image Nanocrystals. On-Surface Chemical Dynamics Elucidated by Supersonic Beam Scattering, Scanning Tunneling Microscopy Imaging, and In Situ Infrared Spectroscopy. Tabletop Core-to-Valence Transient Absorption Spectroscopy of Ultrafast Gas-Phase Chemical Dynamics. Heavy Element Spectroscopy in the Gas Phase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1