Gut-microbiota-on-a-chip: an enabling field for physiological research.

Microphysiological systems Pub Date : 2018-10-01 Epub Date: 2018-10-16 DOI:10.21037/mps.2018.09.01
Grissel Trujillo-de Santiago, Matías José Lobo-Zegers, Silvia Lorena Montes-Fonseca, Yu Shrike Zhang, Mario Moisés Alvarez
{"title":"Gut-microbiota-on-a-chip: an enabling field for physiological research.","authors":"Grissel Trujillo-de Santiago, Matías José Lobo-Zegers, Silvia Lorena Montes-Fonseca, Yu Shrike Zhang, Mario Moisés Alvarez","doi":"10.21037/mps.2018.09.01","DOIUrl":null,"url":null,"abstract":"<p><p>Overwhelming scientific evidence today confirms that the gut microbiota is a central player in human health. Knowledge about interactions between human gut microbiota and human health has evolved rapidly in the last decade, based on experimental work involving analysis of human fecal samples or animal models (mainly rodents). A more detailed and cost-effective description of this interplay is now being enabled by the use of in vitro systems (i.e., gut-microbiota-on-chip systems) that recapitulate key aspects of the interaction between microbiota and human cells. Here, we review recent examples of the design and use of pioneering on-chip platforms for the study of the cross-talk between representative members of human microbiota and human microtissues. In these systems, the combined use of state-of-the-art microfluidics, biomaterials, cell culture techniques, classical microbiology, and a touch of genetic expression profiling have converged for the development of gut-on-chip platforms capable of recreating key features of the interplay between human microbiota and host human tissues. We foresee that the integration of novel microfabrication techniques and stem cell technologies will further accelerate the development of more complex and physiologically relevant microbiota-on-chip platforms. In turn, this will foster the faster acquisition of knowledge regarding human microbiota and will enable important advances in the understanding of how to control or prevent disease.</p>","PeriodicalId":87327,"journal":{"name":"Microphysiological systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096182/pdf/nihms-1693733.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microphysiological systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/mps.2018.09.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/10/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Overwhelming scientific evidence today confirms that the gut microbiota is a central player in human health. Knowledge about interactions between human gut microbiota and human health has evolved rapidly in the last decade, based on experimental work involving analysis of human fecal samples or animal models (mainly rodents). A more detailed and cost-effective description of this interplay is now being enabled by the use of in vitro systems (i.e., gut-microbiota-on-chip systems) that recapitulate key aspects of the interaction between microbiota and human cells. Here, we review recent examples of the design and use of pioneering on-chip platforms for the study of the cross-talk between representative members of human microbiota and human microtissues. In these systems, the combined use of state-of-the-art microfluidics, biomaterials, cell culture techniques, classical microbiology, and a touch of genetic expression profiling have converged for the development of gut-on-chip platforms capable of recreating key features of the interplay between human microbiota and host human tissues. We foresee that the integration of novel microfabrication techniques and stem cell technologies will further accelerate the development of more complex and physiologically relevant microbiota-on-chip platforms. In turn, this will foster the faster acquisition of knowledge regarding human microbiota and will enable important advances in the understanding of how to control or prevent disease.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
芯片上的肠道微生物群:生理研究的有利领域。
如今,大量科学证据证实,肠道微生物群在人类健康中发挥着核心作用。在过去十年中,基于对人类粪便样本或动物模型(主要是啮齿动物)进行分析的实验工作,有关人类肠道微生物群与人类健康之间相互作用的知识得到了迅速发展。现在,通过使用体外系统(即芯片上的肠道微生物群系统),可以更详细、更经济地描述这种相互作用,该系统再现了微生物群与人体细胞之间相互作用的关键方面。在此,我们回顾了最近设计和使用开创性芯片平台研究人类微生物群代表性成员与人类微组织之间交叉对话的实例。在这些系统中,最先进的微流控技术、生物材料、细胞培养技术、经典微生物学和基因表达谱分析技术的结合使用,使芯片肠道平台的开发能够重现人类微生物群与宿主人体组织之间相互作用的关键特征。我们预计,新型微加工技术和干细胞技术的整合将进一步加速开发更复杂、更符合生理特点的芯片微生物群平台。反过来,这将促进更快地获取有关人类微生物群的知识,并在理解如何控制或预防疾病方面取得重要进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum to Body-in-a-Cube: a microphysiological system for multi-tissue co-culture with near-physiological amounts of blood surrogate SARS-CoV-2-related vascular injury: mechanisms, imaging and models. Recent advancements of human iPSC derived cardiomyocytes in drug screening and tissue regeneration Body-in-a-Cube: a microphysiological system for multi-tissue co-culture with near-physiological amounts of blood surrogate. Engineering bone marrow-on-a-chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1