Editorial overview: Microtubules in nervous system development

IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neurobiology Pub Date : 2021-04-21 DOI:10.1002/dneu.22817
Frank Bradke, Antonina Roll-Mecak
{"title":"Editorial overview: Microtubules in nervous system development","authors":"Frank Bradke, Antonina Roll-Mecak","doi":"10.1002/dneu.22817","DOIUrl":null,"url":null,"abstract":"The ability of the nervous system to process information depends on the complex and precise organization of highly ramified and polarized cells such as neurons and glia. The microtubule cytoskeleton is crucial for these cells to attain their elaborate morphologies and to maintain the polarized trafficking of cargo that are required for their communication. This special issue of Developmental Neurobiology brings together reviews and original work focused on how neurons and glia build and maintain their polarized, complex microtubule arrays, how they orchestrate the trafficking of organelles and vesicles, and how they remodel their microtubule cytoskeleton in response to injury. The issue starts with two reviews focused on how microtubule arrays are built and maintained in neurons and glia. These cells pose particular challenges because they need to assemble the microtubule arrays with different morphologies and dynamics in their soma and distal processes and thus rely on decentralized mechanisms of microtubule nucleation. Lüders focuses on recent advances in our understanding of the molecular mechanisms of microtubule nucleation in axons and dendrites to generate arrays with different organization and polarities. This specialization of the microtubule cytoskeleton for transmitting (axon) and receiving (dendrite) information is central to neuronal circuitry (Lüders, 2021). Weigel and colleagues present an overview of microtubule organization of glial cells in the brain– – oligodendrocytes, astrocytes, and microglia, and highlight the many outstanding questions that still remain unanswered in the field: the molecular pathways for microtubule nucleation in distal processes, how trafficking is directed and how these cells build unique, complex structures such as the myelin sheet (Weigel et al., 2021). Trafficking is a key process in neurons, where organelles move along microtubules in the axon and dendrites. In their review, Cheng and Sheng describe how mitochondria are transported in the axon during development and maturation. Interestingly, they highlight recent work about how mitochondria motility changes with aging and present links to neurodegenerative, injured and regenerative stages of the nervous system (Cheng & Sheng, 2021). While we have reached a good understanding of microtubule dynamics, structure and trafficking events in neurons we still know relatively little about the different tubulin isotypes expressed in the developing brain. The article from the Kneussel lab helps to fill this important gap by presenting the tubulin isotypes that are differentially expressed in the developing mouse brain and cultured primary neurons (Hausrat et al., 2021). Next, Moutin and colleagues focus on the role of tubulin posttranslational modifications that is, the tubulin code in regulating microtubule dynamics, neuronal differentiation, plasticity, and transport and highlight the role of the tubulin code in many pathologies of the nervous system (Moutin et al., 2021). Cilia are found on almost all neurons, a fact that often gets overlooked when studying these cells. While we traditionally think about neuronal communication as facilitated through axonal– dendritic connections, we now know that cilia also play an important role. Akella and Barr focus on the cilia of C. elegans sensory neurons and review recent work that uncovered the importance of the tubulin code in building their specialized architecture, regulating intraflagellar transport, and controlling the release of extracellular vesicles (Akella & Barr, 2021). One key feature of neurons is their amazing growth when neurons are already integrated in neuronal circuits, that is, upon growth of the whole organism. The cytoskeleton plays a key role in tensiondriven axon elongation, which is discussed in the review by (Sousa and Sousa, 2021). Finally, the issue is completed with a review from Rolls and colleagues that describes the microtubule dynamics in neurons (Rolls et al., 2021). By presenting the dynamics found in healthy neurons, the authors highlight clearly how these processes are derailed during injury, and how regeneration can be triggered by microtubule stabilization. Overall, this collection of reviews provides exciting insights and a timely update into the role of microtubules in the nervous system, a rapidly growing field.","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"81 3","pages":"229-230"},"PeriodicalIF":2.7000,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/dneu.22817","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22817","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The ability of the nervous system to process information depends on the complex and precise organization of highly ramified and polarized cells such as neurons and glia. The microtubule cytoskeleton is crucial for these cells to attain their elaborate morphologies and to maintain the polarized trafficking of cargo that are required for their communication. This special issue of Developmental Neurobiology brings together reviews and original work focused on how neurons and glia build and maintain their polarized, complex microtubule arrays, how they orchestrate the trafficking of organelles and vesicles, and how they remodel their microtubule cytoskeleton in response to injury. The issue starts with two reviews focused on how microtubule arrays are built and maintained in neurons and glia. These cells pose particular challenges because they need to assemble the microtubule arrays with different morphologies and dynamics in their soma and distal processes and thus rely on decentralized mechanisms of microtubule nucleation. Lüders focuses on recent advances in our understanding of the molecular mechanisms of microtubule nucleation in axons and dendrites to generate arrays with different organization and polarities. This specialization of the microtubule cytoskeleton for transmitting (axon) and receiving (dendrite) information is central to neuronal circuitry (Lüders, 2021). Weigel and colleagues present an overview of microtubule organization of glial cells in the brain– – oligodendrocytes, astrocytes, and microglia, and highlight the many outstanding questions that still remain unanswered in the field: the molecular pathways for microtubule nucleation in distal processes, how trafficking is directed and how these cells build unique, complex structures such as the myelin sheet (Weigel et al., 2021). Trafficking is a key process in neurons, where organelles move along microtubules in the axon and dendrites. In their review, Cheng and Sheng describe how mitochondria are transported in the axon during development and maturation. Interestingly, they highlight recent work about how mitochondria motility changes with aging and present links to neurodegenerative, injured and regenerative stages of the nervous system (Cheng & Sheng, 2021). While we have reached a good understanding of microtubule dynamics, structure and trafficking events in neurons we still know relatively little about the different tubulin isotypes expressed in the developing brain. The article from the Kneussel lab helps to fill this important gap by presenting the tubulin isotypes that are differentially expressed in the developing mouse brain and cultured primary neurons (Hausrat et al., 2021). Next, Moutin and colleagues focus on the role of tubulin posttranslational modifications that is, the tubulin code in regulating microtubule dynamics, neuronal differentiation, plasticity, and transport and highlight the role of the tubulin code in many pathologies of the nervous system (Moutin et al., 2021). Cilia are found on almost all neurons, a fact that often gets overlooked when studying these cells. While we traditionally think about neuronal communication as facilitated through axonal– dendritic connections, we now know that cilia also play an important role. Akella and Barr focus on the cilia of C. elegans sensory neurons and review recent work that uncovered the importance of the tubulin code in building their specialized architecture, regulating intraflagellar transport, and controlling the release of extracellular vesicles (Akella & Barr, 2021). One key feature of neurons is their amazing growth when neurons are already integrated in neuronal circuits, that is, upon growth of the whole organism. The cytoskeleton plays a key role in tensiondriven axon elongation, which is discussed in the review by (Sousa and Sousa, 2021). Finally, the issue is completed with a review from Rolls and colleagues that describes the microtubule dynamics in neurons (Rolls et al., 2021). By presenting the dynamics found in healthy neurons, the authors highlight clearly how these processes are derailed during injury, and how regeneration can be triggered by microtubule stabilization. Overall, this collection of reviews provides exciting insights and a timely update into the role of microtubules in the nervous system, a rapidly growing field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
编辑概述:神经系统发育中的微管
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Developmental Neurobiology
Developmental Neurobiology 生物-发育生物学
CiteScore
6.50
自引率
0.00%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.
期刊最新文献
Issue Information Cellularity Defects Are Not Ubiquitous in the Brains of Fetuses With Down Syndrome Dysregulation of parvalbumin expression and neurotransmitter imbalance in the auditory cortex of the BTBR mouse model of autism spectrum disorder Efficient Dlx2-mediated astrocyte-to-neuron conversion and inhibition of neuroinflammation by NeuroD1 Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1