A Facile Synthesis of Nido-Carborane Polymers via Dynamic Self-Assembly by Poly(carboxybetaine methacrylate).

Zhou Wang
{"title":"A Facile Synthesis of Nido-Carborane Polymers via Dynamic Self-Assembly by Poly(carboxybetaine methacrylate).","authors":"Zhou Wang","doi":"10.1166/jnn.2021.19483","DOIUrl":null,"url":null,"abstract":"<p><p>Carborane are widely applied in boron neutron capture therapy (BNCT) field, but it is difficult to perform biocompatibility with cells due to its own water solubility differences, so how to solve the water solubility problem has always been the focus of research. A simple, inexpensive and effective method was used to study the synthesis of nido-carborane azaspirodecanium poly(carboxybetaine methacrylate) by one-pot cyclization of nido-carborane azaspirodecanium under the synergistic effect of inorganic bases and conventional organic solvents. Its characterization is mainly to use 1H-NMR nuclear magnetic resonance spectrum and infrared spectroscopy to determine the characteristic peak and range of borane. Through transmission electron microscope (TEM), it can be observed that the white nanoparticles, namely carborane, are completely contained by polymer ions, which not only increases the surface area but also the concentration of boron uptake in the cell is 100 times that of borono-phenylalanine (BPA). Based on the successful synthesis of N-CB5-4 and N-CB6-5 without harsh conditions, a feasibility point of view was put forward, namely, super water-soluble carborane polymer.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 11","pages":"5681-5687"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carborane are widely applied in boron neutron capture therapy (BNCT) field, but it is difficult to perform biocompatibility with cells due to its own water solubility differences, so how to solve the water solubility problem has always been the focus of research. A simple, inexpensive and effective method was used to study the synthesis of nido-carborane azaspirodecanium poly(carboxybetaine methacrylate) by one-pot cyclization of nido-carborane azaspirodecanium under the synergistic effect of inorganic bases and conventional organic solvents. Its characterization is mainly to use 1H-NMR nuclear magnetic resonance spectrum and infrared spectroscopy to determine the characteristic peak and range of borane. Through transmission electron microscope (TEM), it can be observed that the white nanoparticles, namely carborane, are completely contained by polymer ions, which not only increases the surface area but also the concentration of boron uptake in the cell is 100 times that of borono-phenylalanine (BPA). Based on the successful synthesis of N-CB5-4 and N-CB6-5 without harsh conditions, a feasibility point of view was put forward, namely, super water-soluble carborane polymer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚甲基丙烯酸羧酸甜菜碱动态自组装法快速合成奈多-碳硼烷聚合物。
碳硼烷广泛应用于硼中子俘获治疗(BNCT)领域,但由于其自身的水溶性差异,难以与细胞进行生物相容性,因此如何解决其水溶性问题一直是研究的重点。采用一种简单、廉价、有效的方法,在无机碱和常规有机溶剂的协同作用下,将氮杂环碳硼烷一锅环化合成氮杂环十二烷聚甲基丙烯酸羧甜菜碱。其表征主要是利用1H-NMR核磁共振谱和红外光谱来确定硼烷的特征峰和范围。通过透射电镜(TEM)可以观察到,白色纳米粒子即碳硼烷被聚合物离子完全包裹,不仅增加了表面积,而且细胞内硼的吸收浓度是硼苯丙氨酸(BPA)的100倍。在成功合成N-CB5-4和N-CB6-5的基础上,提出了一种可行性观点,即超水溶性碳硼烷聚合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of nanoscience and nanotechnology
Journal of nanoscience and nanotechnology 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.6 months
期刊介绍: JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.
期刊最新文献
Efficacy and Safety of Guihuang Formula in Treating Type III Prostatitis Patients with Dampness-Heat and Blood Stasis Syndrome: A Randomized Controlled Trial. Unveiling degradation mechanism of PAHs by a Sphingobium strain from a microbial consortium. Modifier pathways in polyglutamine (PolyQ) diseases: from genetic screens to drug targets. Preparing and Applying Silver Nanoparticles in Conductive Ink and Inkjet Painting. Observation of Dominant Nuclei and Magic-Sized CdS Nanoparticles in a Single-Phase System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1