ADME properties, bioactivity and molecular docking studies of 4-amino-chalcone derivatives: new analogues for the treatment of Alzheimer, glaucoma and epileptic diseases.
Meliha Burcu Gürdere, Yakup Budak, Umit M Kocyigit, Parham Taslimi, Burak Tüzün, Mustafa Ceylan
{"title":"ADME properties, bioactivity and molecular docking studies of 4-amino-chalcone derivatives: new analogues for the treatment of Alzheimer, glaucoma and epileptic diseases.","authors":"Meliha Burcu Gürdere, Yakup Budak, Umit M Kocyigit, Parham Taslimi, Burak Tüzün, Mustafa Ceylan","doi":"10.1007/s40203-021-00094-x","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, in vitro inhibition effects of (E)-1-(4-aminophenyl)-3-(aryl) prop-2-en-1-one (4-amino-chalcones) derivatives (3a-o) on acetylcholinesterase (AChE) enzyme and human erythrocyte carbonic anhydrase I and II isoenzymes (hCA I- II) were investigated. And also, the biological activities of 4-amino-chalcone derivatives against enzymes which names are acetylcholinesterase (PDB ID: 1OCE), human Carbonic Anhydrase I (PDB ID: 2CAB), human carbonic anhydrase II (PDB ID: 3DC3), were compared. After the results obtained, ADME/T analysis was performed in order to use 4-amino-chalcone derivatives as a drug in the future. Effective inhibitors of carbonic anhydrase I and II isozymes (hCAI and II) and acetylcholinesterase (AChE) enzymes with Ki values in the range of 2.55 ± 0.35-11.75 ± 3.57 nM for hCA I, 4.31 ± 0.78-17.55 ± 5.86 nM for hCA II and 96.01 ± 25.34-1411.41 ± 32.88 nM for AChE, respectively, were the 4-amino-chalcone derivatives (3a-o) molecules.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-021-00094-x.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":" ","pages":"34"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40203-021-00094-x","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-021-00094-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this study, in vitro inhibition effects of (E)-1-(4-aminophenyl)-3-(aryl) prop-2-en-1-one (4-amino-chalcones) derivatives (3a-o) on acetylcholinesterase (AChE) enzyme and human erythrocyte carbonic anhydrase I and II isoenzymes (hCA I- II) were investigated. And also, the biological activities of 4-amino-chalcone derivatives against enzymes which names are acetylcholinesterase (PDB ID: 1OCE), human Carbonic Anhydrase I (PDB ID: 2CAB), human carbonic anhydrase II (PDB ID: 3DC3), were compared. After the results obtained, ADME/T analysis was performed in order to use 4-amino-chalcone derivatives as a drug in the future. Effective inhibitors of carbonic anhydrase I and II isozymes (hCAI and II) and acetylcholinesterase (AChE) enzymes with Ki values in the range of 2.55 ± 0.35-11.75 ± 3.57 nM for hCA I, 4.31 ± 0.78-17.55 ± 5.86 nM for hCA II and 96.01 ± 25.34-1411.41 ± 32.88 nM for AChE, respectively, were the 4-amino-chalcone derivatives (3a-o) molecules.
Supplementary information: The online version contains supplementary material available at 10.1007/s40203-021-00094-x.