RANKL and RANK in extracellular vesicles: surprising new players in bone remodeling.

L Shannon Holliday, Shivani S Patel, Wellington J Rody
{"title":"RANKL and RANK in extracellular vesicles: surprising new players in bone remodeling.","authors":"L Shannon Holliday, Shivani S Patel, Wellington J Rody","doi":"10.20517/evcna.2020.02","DOIUrl":null,"url":null,"abstract":"Receptor activator of nuclear factor kappa B-ligand (RANKL), its receptor RANK, and osteoprotegerin which binds RANKL and acts as a soluble decoy receptor, are essential controllers of bone remodeling. They also play important roles in establishing immune tolerance and in the development of the lymphatic system and mammary glands. In bone, RANKL stimulates osteoclast formation by binding RANK on osteoclast precursors and osteoclasts. This is required for bone resorption. Recently, RANKL and RANK have been shown to be functional components of extracellular vesicles (EVs). Data linking RANKL and RANK in EVs to biological regulatory roles are reviewed, and crucial unanswered questions are examined. RANKL and RANK are transmembrane proteins and their presence in EVs allows them to act at a distance from their cell of origin. Because RANKL-bearing osteocytes and osteoblasts are often spatially distant from RANK-containing osteoclasts in vivo, this may be crucial for the stimulation of osteoclast formation and bone resorption. RANK in EVs from osteoclasts has the capacity to stimulate a RANKL reverse signaling pathway in osteoblasts that promotes bone formation. This serves to couple bone resorption with bone formation and has inspired novel bifunctional therapeutic agents. RANKL- and RANK- containing EVs in serum may serve as biomarkers for bone and immune pathologies. In summary, EVs containing RANKL and RANK have been identified as intercellular regulators in bone biology. They add complexity to the central signaling network responsible for maintaining bone. RANKL- and RANK-containing EVs are attractive as drug targets and as biomarkers.","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"2 ","pages":"18-28"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112638/pdf/","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracellular vesicles and circulating nucleic acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/evcna.2020.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Receptor activator of nuclear factor kappa B-ligand (RANKL), its receptor RANK, and osteoprotegerin which binds RANKL and acts as a soluble decoy receptor, are essential controllers of bone remodeling. They also play important roles in establishing immune tolerance and in the development of the lymphatic system and mammary glands. In bone, RANKL stimulates osteoclast formation by binding RANK on osteoclast precursors and osteoclasts. This is required for bone resorption. Recently, RANKL and RANK have been shown to be functional components of extracellular vesicles (EVs). Data linking RANKL and RANK in EVs to biological regulatory roles are reviewed, and crucial unanswered questions are examined. RANKL and RANK are transmembrane proteins and their presence in EVs allows them to act at a distance from their cell of origin. Because RANKL-bearing osteocytes and osteoblasts are often spatially distant from RANK-containing osteoclasts in vivo, this may be crucial for the stimulation of osteoclast formation and bone resorption. RANK in EVs from osteoclasts has the capacity to stimulate a RANKL reverse signaling pathway in osteoblasts that promotes bone formation. This serves to couple bone resorption with bone formation and has inspired novel bifunctional therapeutic agents. RANKL- and RANK- containing EVs in serum may serve as biomarkers for bone and immune pathologies. In summary, EVs containing RANKL and RANK have been identified as intercellular regulators in bone biology. They add complexity to the central signaling network responsible for maintaining bone. RANKL- and RANK-containing EVs are attractive as drug targets and as biomarkers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞外囊泡中的RANKL和RANK:骨重塑中令人惊讶的新参与者。
核因子κ b配体受体激活剂(RANKL)及其受体RANK和结合RANKL并作为可溶性诱饵受体的骨保护素是骨重塑的重要控制者。它们在建立免疫耐受以及淋巴系统和乳腺的发育中也起着重要作用。在骨中,RANKL通过将RANK与破骨细胞前体和破骨细胞结合来刺激破骨细胞的形成。这是骨吸收所必需的。最近,RANKL和RANK被证明是细胞外囊泡(EVs)的功能成分。本文回顾了ev中RANKL和RANK与生物调控作用的数据联系,并对关键的未解问题进行了研究。RANKL和RANK是跨膜蛋白,它们在电动汽车中的存在使它们能够在远离其起源细胞的距离上发挥作用。由于携带rankl的骨细胞和成骨细胞在体内通常与含有rankl的破骨细胞在空间上距离较远,这可能对刺激破骨细胞形成和骨吸收至关重要。来自破骨细胞的ev中的RANK能够刺激成骨细胞中的RANKL反向信号通路,从而促进骨形成。这有助于骨吸收与骨形成的耦合,并激发了新的双功能治疗剂。血清中含有RANKL和RANK的ev可作为骨和免疫病理的生物标志物。综上所述,含有RANKL和RANK的ev已被确定为骨生物学中的细胞间调节因子。它们增加了负责维持骨骼的中央信号网络的复杂性。RANKL-和含有RANKL的ev作为药物靶点和生物标志物具有很大的吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection Extracellular vesicles in tumor-adipose tissue crosstalk: key drivers and therapeutic targets in cancer cachexia Harnessing crosstalk between extracellular vesicles and viruses for disease diagnostics and therapeutics Endosomal escape mechanisms of extracellular vesicle-based drug carriers: lessons for lipid nanoparticle design Synovial fluid extracellular vesicles as arthritis biomarkers: the added value of lipid-profiling and integrated omics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1