Mouse totipotent stem cells captured and maintained through spliceosomal repression.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2021-05-27 Epub Date: 2021-05-14 DOI:10.1016/j.cell.2021.04.020
Hui Shen, Min Yang, Shiyu Li, Jing Zhang, Bing Peng, Chunhui Wang, Zai Chang, Jennie Ong, Peng Du
{"title":"Mouse totipotent stem cells captured and maintained through spliceosomal repression.","authors":"Hui Shen,&nbsp;Min Yang,&nbsp;Shiyu Li,&nbsp;Jing Zhang,&nbsp;Bing Peng,&nbsp;Chunhui Wang,&nbsp;Zai Chang,&nbsp;Jennie Ong,&nbsp;Peng Du","doi":"10.1016/j.cell.2021.04.020","DOIUrl":null,"url":null,"abstract":"<p><p>Since establishment of the first embryonic stem cells (ESCs), in vitro culture of totipotent cells functionally and molecularly comparable with in vivo blastomeres with embryonic and extraembryonic developmental potential has been a challenge. Here we report that spliceosomal repression in mouse ESCs drives a pluripotent-to-totipotent state transition. Using the splicing inhibitor pladienolide B, we achieve stable in vitro culture of totipotent ESCs comparable at molecular levels with 2- and 4-cell blastomeres, which we call totipotent blastomere-like cells (TBLCs). Mouse chimeric assays combined with single-cell RNA sequencing (scRNA-seq) demonstrate that TBLCs have a robust bidirectional developmental capability to generate multiple embryonic and extraembryonic cell lineages. Mechanically, spliceosomal repression causes widespread splicing inhibition of pluripotent genes, whereas totipotent genes, which contain few short introns, are efficiently spliced and transcriptionally activated. Our study provides a means for capturing and maintaining totipotent stem cells.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"2843-2859.e20"},"PeriodicalIF":5.7000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cell.2021.04.020","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2021.04.020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 88

Abstract

Since establishment of the first embryonic stem cells (ESCs), in vitro culture of totipotent cells functionally and molecularly comparable with in vivo blastomeres with embryonic and extraembryonic developmental potential has been a challenge. Here we report that spliceosomal repression in mouse ESCs drives a pluripotent-to-totipotent state transition. Using the splicing inhibitor pladienolide B, we achieve stable in vitro culture of totipotent ESCs comparable at molecular levels with 2- and 4-cell blastomeres, which we call totipotent blastomere-like cells (TBLCs). Mouse chimeric assays combined with single-cell RNA sequencing (scRNA-seq) demonstrate that TBLCs have a robust bidirectional developmental capability to generate multiple embryonic and extraembryonic cell lineages. Mechanically, spliceosomal repression causes widespread splicing inhibition of pluripotent genes, whereas totipotent genes, which contain few short introns, are efficiently spliced and transcriptionally activated. Our study provides a means for capturing and maintaining totipotent stem cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过剪接体抑制捕获和维持小鼠全能干细胞。
自首例胚胎干细胞(ESCs)建立以来,在体外培养功能和分子上与体内卵裂球相当的具有胚胎和胚胎外发育潜力的全能细胞一直是一个挑战。在这里,我们报告剪接体抑制小鼠ESCs驱动多能到全能状态的转变。利用剪接抑制剂pladienolide B,我们在体外稳定培养出了与2细胞和4细胞卵裂球(我们称之为全能卵裂球样细胞(TBLCs))分子水平相当的全能ESCs。小鼠嵌合实验结合单细胞RNA测序(scRNA-seq)表明,TBLCs具有强大的双向发育能力,可以产生多个胚胎和胚胎外细胞系。从机械上讲,剪接体抑制导致多能基因广泛的剪接抑制,而含有少量短内含子的全能基因则被有效地剪接和转录激活。我们的研究为捕获和维持全能干细胞提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Directed Electrostatics Strategy Integrated as a Graph Neural Network Approach for Accelerated Cluster Structure Prediction. Multiscale Responsive Kinetic Modeling: Quantifying Biomolecular Reaction Flux under Varying Electrochemical Conditions. Assessing Nonadiabatic Dynamics Methods in Long Timescales. How the Piecewise-Linearity Requirement for the Density Affects Quantities in the Kohn-Sham System. Coil-Library-Derived Amino-Acid-Specific Side-Chain χ1 Dihedral Angle Potentials for AMBER-Type Protein Force Field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1