Toxicity mechanisms of nanoparticles in the male reproductive system.

IF 3.4 2区 医学 Q2 PHARMACOLOGY & PHARMACY Drug Metabolism Reviews Pub Date : 2021-11-01 Epub Date: 2021-05-14 DOI:10.1080/03602532.2021.1917597
Khaled Habas, Eşref Demir, Chongye Guo, Martin H Brinkworth, Diana Anderson
{"title":"Toxicity mechanisms of nanoparticles in the male reproductive system.","authors":"Khaled Habas,&nbsp;Eşref Demir,&nbsp;Chongye Guo,&nbsp;Martin H Brinkworth,&nbsp;Diana Anderson","doi":"10.1080/03602532.2021.1917597","DOIUrl":null,"url":null,"abstract":"<p><p>The field of nanotechnology has allowed for increasing nanoparticle (NP) exposure to the male reproductive system. Certain NPs have been reported to have adverse consequences on male germ and somatic cells. Germ cells are the bridge between generations and are responsible for the transmission of genetic and epigenetic information to future generations. A number of NPs have negative impacts on male germ and somatic cells which could ultimately affect fertility or the ability to produce healthy offspring. These impacts are related to NP composition, modification, concentration, agglomeration, and route of administration. NPs can induce severe toxic effects on the male reproduction system after passing through the blood-testis barrier and ultimately damaging the spermatozoa. Therefore, understanding the impacts of NPs on reproduction is necessary. This review will provide a comprehensive overview on the current state of knowledge derived from the previous <i>in vivo</i> and <i>in vitro</i> research on effects of NPs on the male reproductive system at the genetic, cellular, and molecular levels.</p>","PeriodicalId":11307,"journal":{"name":"Drug Metabolism Reviews","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/03602532.2021.1917597","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03602532.2021.1917597","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 20

Abstract

The field of nanotechnology has allowed for increasing nanoparticle (NP) exposure to the male reproductive system. Certain NPs have been reported to have adverse consequences on male germ and somatic cells. Germ cells are the bridge between generations and are responsible for the transmission of genetic and epigenetic information to future generations. A number of NPs have negative impacts on male germ and somatic cells which could ultimately affect fertility or the ability to produce healthy offspring. These impacts are related to NP composition, modification, concentration, agglomeration, and route of administration. NPs can induce severe toxic effects on the male reproduction system after passing through the blood-testis barrier and ultimately damaging the spermatozoa. Therefore, understanding the impacts of NPs on reproduction is necessary. This review will provide a comprehensive overview on the current state of knowledge derived from the previous in vivo and in vitro research on effects of NPs on the male reproductive system at the genetic, cellular, and molecular levels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米颗粒在男性生殖系统中的毒性机制。
纳米技术领域已经允许增加纳米颗粒(NP)暴露于男性生殖系统。据报道,某些NPs对男性生殖细胞和体细胞有不良影响。生殖细胞是代际之间的桥梁,负责将遗传和表观遗传信息传递给后代。一些NPs对男性生殖细胞和体细胞有负面影响,最终可能影响生育能力或产生健康后代的能力。这些影响与NP的组成、修饰、浓度、团聚和给药途径有关。NPs可通过血睾丸屏障,最终损害精子,对男性生殖系统产生严重的毒性作用。因此,了解NPs对生殖的影响是必要的。本文将从遗传、细胞和分子水平对NPs对男性生殖系统影响的体内和体外研究现状进行全面综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Metabolism Reviews
Drug Metabolism Reviews 医学-药学
CiteScore
11.10
自引率
1.70%
发文量
21
审稿时长
1 months
期刊介绍: Drug Metabolism Reviews consistently provides critically needed reviews of an impressive array of drug metabolism research-covering established, new, and potential drugs; environmentally toxic chemicals; absorption; metabolism and excretion; and enzymology of all living species. Additionally, the journal offers new hypotheses of interest to diverse groups of medical professionals including pharmacologists, toxicologists, chemists, microbiologists, pharmacokineticists, immunologists, mass spectroscopists, as well as enzymologists working in xenobiotic biotransformation.
期刊最新文献
Metabolism and detection of designer benzodiazepines: a systematic review. The role and current research status of resveratrol in the treatment of osteoarthritis and its mechanisms: a narrative review. Drug metabolism and transport mediated the hepatotoxicity of Pleuropterus multiflorus root: a review. Drug transporters in drug disposition - highlights from the year 2023. Insights into pharmacogenetics, drug-gene interactions, and drug-drug-gene interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1