Effects of Enterococcus faecalis administration on the community structure of airborne bacteria in weanling piglet and layer hen houses.

IF 0.8 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of General and Applied Microbiology Pub Date : 2021-10-22 Epub Date: 2021-06-12 DOI:10.2323/jgam.2020.11.001
Shoutao Cheng, Mo Chen, Min Gao, Tianlei Qiu, Shulei Tian, Shuyan Li, Xuming Wang
{"title":"Effects of Enterococcus faecalis administration on the community structure of airborne bacteria in weanling piglet and layer hen houses.","authors":"Shoutao Cheng,&nbsp;Mo Chen,&nbsp;Min Gao,&nbsp;Tianlei Qiu,&nbsp;Shulei Tian,&nbsp;Shuyan Li,&nbsp;Xuming Wang","doi":"10.2323/jgam.2020.11.001","DOIUrl":null,"url":null,"abstract":"<p><p>Probiotics have been shown to improve microbial compositions in animal intestine and feces, but the effects of probiotic administration on airborne microbial composition in animal houses remain unclear. In this study, we investigated the effects of dietary Enterococcus faecalis on the bacterial community structure in the air of piglet and layer hen houses. Indoor air and feces from piglet and layer hen houses were sampled after supplementing E. faecalis in feed for 60 days, and bacterial community structures were analyzed using Illumina high-throughput sequencing technology. Results showed that Chao1, ACE, Shannon, and Simpson indices of bacterial diversity did not significantly change in feces or indoor air of piglet or layer hen after supplementation with E. faecalis (P > 0.05). However, E. faecalis administration resulted in a decrease in the relative abundance of Proteobacteria (P < 0.05). In addition, E. faecalis significantly reduced the relative abundance of opportunistic pathogens such as Acinetobacter, Escherichia, and Shigella (P < 0.05), and beneficial bacterial genus such as Lactobacillus was significantly enriched in both feces and indoor air (P < 0.05). These changes should be of benefit to livestock, farm workers, and the surrounding environment.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2020.11.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Probiotics have been shown to improve microbial compositions in animal intestine and feces, but the effects of probiotic administration on airborne microbial composition in animal houses remain unclear. In this study, we investigated the effects of dietary Enterococcus faecalis on the bacterial community structure in the air of piglet and layer hen houses. Indoor air and feces from piglet and layer hen houses were sampled after supplementing E. faecalis in feed for 60 days, and bacterial community structures were analyzed using Illumina high-throughput sequencing technology. Results showed that Chao1, ACE, Shannon, and Simpson indices of bacterial diversity did not significantly change in feces or indoor air of piglet or layer hen after supplementation with E. faecalis (P > 0.05). However, E. faecalis administration resulted in a decrease in the relative abundance of Proteobacteria (P < 0.05). In addition, E. faecalis significantly reduced the relative abundance of opportunistic pathogens such as Acinetobacter, Escherichia, and Shigella (P < 0.05), and beneficial bacterial genus such as Lactobacillus was significantly enriched in both feces and indoor air (P < 0.05). These changes should be of benefit to livestock, farm workers, and the surrounding environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粪肠球菌饲喂对断奶仔猪和蛋鸡舍空气细菌群落结构的影响。
益生菌已被证明可以改善动物肠道和粪便中的微生物组成,但益生菌管理对动物室内空气中微生物组成的影响尚不清楚。本试验旨在研究饲粮中添加粪肠球菌对仔猪和蛋鸡舍空气中细菌群落结构的影响。在饲料中添加粪肠杆菌60 d后,对仔猪和蛋鸡舍的室内空气和粪便进行采样,采用Illumina高通量测序技术对细菌群落结构进行分析。结果表明,添加粪肠球菌后,仔猪和蛋鸡粪便和室内空气中细菌多样性Chao1、ACE、Shannon和Simpson指数均无显著变化(P > 0.05)。然而,粪肠杆菌导致变形菌的相对丰度降低(P < 0.05)。此外,粪肠杆菌显著降低了不动杆菌、埃希氏菌和志贺氏菌等条件致病菌的相对丰度(P < 0.05),而有益菌属乳酸杆菌等在粪便和室内空气中均显著富集(P < 0.05)。这些变化应该有利于牲畜、农场工人和周围环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of General and Applied Microbiology
Journal of General and Applied Microbiology 生物-生物工程与应用微生物
CiteScore
2.40
自引率
0.00%
发文量
42
审稿时长
6-12 weeks
期刊介绍: JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.
期刊最新文献
Lactic acid fermentation of kamaboko, a heated Alaska pollock surimi, enhances angiotensin I-converting enzyme inhibitory activity via fish protein hydrolysis. Addition of α-1,3-glucan-binding domains to α-1,3-glucanase Agn1p from  Schizosaccharomyces pombe enhances hydrolytic activity of insoluble α-1,3-glucan. Immobilization of fumarase from thermophilic eukaryotic red alga Cyanidioschyzon merolae on ceramic carrier. Isolation of hitherto-uncultivated microorganisms- Application of radical scavengers. Cellulolytic enzymes in Microbulbifer sp. Strain GL-2, a marine fish intestinal bacterium, with emphasis on endo-1,4-β-glucanases Cel5A and Cel8.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1