{"title":"Regulation of autophagy by VPS34 branched ubiquitination controls proteostasis and liver metabolism.","authors":"Yu-Hsuan Chen, Ruey-Hwa Chen","doi":"10.1080/23723556.2021.1915076","DOIUrl":null,"url":null,"abstract":"<p><p>Ubiquitin-proteasome system and autophagy are the two major recycling processes. Our recent work uncovers a K29/K48 branched ubiquitination on the phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3, best known as VPS34). This ubiquitination is positively or negatively regulated under pathophysiological conditions to influence on autophagy, proteostasis and lipid homeostasis.</p>","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":"8 3","pages":"1915076"},"PeriodicalIF":2.6000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23723556.2021.1915076","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23723556.2021.1915076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ubiquitin-proteasome system and autophagy are the two major recycling processes. Our recent work uncovers a K29/K48 branched ubiquitination on the phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3, best known as VPS34). This ubiquitination is positively or negatively regulated under pathophysiological conditions to influence on autophagy, proteostasis and lipid homeostasis.
期刊介绍:
For a long time, solid neoplasms have been viewed as relatively homogeneous entities composed for the most part of malignant cells. It is now clear that tumors are highly heterogeneous structures that evolve in the context of intimate interactions between cancer cells and endothelial, stromal as well as immune cells. During the past few years, experimental and clinical oncologists have witnessed several conceptual transitions of this type. Molecular and Cellular Oncology (MCO) emerges within this conceptual framework as a high-profile forum for the publication of fundamental, translational and clinical research on cancer. The scope of MCO is broad. Submissions dealing with all aspects of oncogenesis, tumor progression and response to therapy will be welcome, irrespective of whether they focus on solid or hematological neoplasms. MCO has gathered leading scientists with expertise in multiple areas of cancer research and other fields of investigation to constitute a large, interdisciplinary, Editorial Board that will ensure the quality of articles accepted for publication. MCO will publish Original Research Articles, Brief Reports, Reviews, Short Reviews, Commentaries, Author Views (auto-commentaries) and Meeting Reports dealing with all aspects of cancer research.