{"title":"Predictive Model Based on Health Data Analysis for Risk of Readmission in Disease-Specific Cohorts.","authors":"Md Shahid Ansari, Abhay Kumar Alok, Dinesh Jain, Santu Rana, Sunil Gupta, Roopa Salwan, Svetha Venkatesh","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intervention planning to reduce 30-day readmission post-acute myocardial infarction (AMI) in an environment of resource scarcity can be improved by readmission prediction score. The aim of study is to derive and validate a prediction model based on routinely collected hospital data for identification of risk factors for all-cause readmission within zero to 30 days post discharge from AMI.</p><p><strong>Methods: </strong>Our study includes 2,849 AMI patient records (January 2005 to December 2014) from a tertiary care facility in India. EMR with ICD-10 diagnosis, admission, pathological, procedural and medication data is used for model building. Model performance is analyzed for different combination of feature groups and diabetes sub-cohort. The derived models are evaluated to identify risk factors for readmissions.</p><p><strong>Results: </strong>The derived model using all features has the highest discrimination in predicting readmission, with AUC as 0.62; (95 percent confidence interval) in internal validation with 70/30 split for derivation and validation. For the sub-cohort of diabetes patients (1359) the discrimination is slightly better with AUC 0.66; (95 percent CI;). Some of the positively associated predictive variables, include age group 80-90, medicine class administered during index admission (Anti-ischemic drugs, Alpha 1 blocker, Xanthine oxidase inhibitors), additional procedure in index admission (Dialysis). While some of the negatively associated predictive variables, include patient demography (Male gender), medicine class administered during index admission (Betablocker, Anticoagulant, Platelet inhibitors, Anti-arrhythmic).</p><p><strong>Conclusions: </strong>Routinely collected data in the hospital's clinical and administrative data repository can identify patients at high risk of readmission following AMI, potentially improving AMI readmission rate.</p>","PeriodicalId":40052,"journal":{"name":"Perspectives in health information management / AHIMA, American Health Information Management Association","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120669/pdf/phim0018-0001j.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspectives in health information management / AHIMA, American Health Information Management Association","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Intervention planning to reduce 30-day readmission post-acute myocardial infarction (AMI) in an environment of resource scarcity can be improved by readmission prediction score. The aim of study is to derive and validate a prediction model based on routinely collected hospital data for identification of risk factors for all-cause readmission within zero to 30 days post discharge from AMI.
Methods: Our study includes 2,849 AMI patient records (January 2005 to December 2014) from a tertiary care facility in India. EMR with ICD-10 diagnosis, admission, pathological, procedural and medication data is used for model building. Model performance is analyzed for different combination of feature groups and diabetes sub-cohort. The derived models are evaluated to identify risk factors for readmissions.
Results: The derived model using all features has the highest discrimination in predicting readmission, with AUC as 0.62; (95 percent confidence interval) in internal validation with 70/30 split for derivation and validation. For the sub-cohort of diabetes patients (1359) the discrimination is slightly better with AUC 0.66; (95 percent CI;). Some of the positively associated predictive variables, include age group 80-90, medicine class administered during index admission (Anti-ischemic drugs, Alpha 1 blocker, Xanthine oxidase inhibitors), additional procedure in index admission (Dialysis). While some of the negatively associated predictive variables, include patient demography (Male gender), medicine class administered during index admission (Betablocker, Anticoagulant, Platelet inhibitors, Anti-arrhythmic).
Conclusions: Routinely collected data in the hospital's clinical and administrative data repository can identify patients at high risk of readmission following AMI, potentially improving AMI readmission rate.
期刊介绍:
Perspectives in Health Information Management is a scholarly, peer-reviewed research journal whose mission is to advance health information management practice and to encourage interdisciplinary collaboration between HIM professionals and others in disciplines supporting the advancement of the management of health information. The primary focus is to promote the linkage of practice, education, and research and to provide contributions to the understanding or improvement of health information management processes and outcomes.