Constructing a control-ready model of EEG signal during general anesthesia in humans.

John H Abel, Marcus A Badgeley, Taylor E Baum, Sourish Chakravarty, Patrick L Purdon, Emery N Brown
{"title":"Constructing a control-ready model of EEG signal during general anesthesia in humans.","authors":"John H Abel, Marcus A Badgeley, Taylor E Baum, Sourish Chakravarty, Patrick L Purdon, Emery N Brown","doi":"10.1016/j.ifacol.2020.12.243","DOIUrl":null,"url":null,"abstract":"<p><p>Significant effort toward the automation of general anesthesia has been made in the past decade. One open challenge is in the development of control-ready patient models for closed-loop anesthesia delivery. Standard depth-of-anesthesia tracking does not readily capture inter-individual differences in response to anesthetics, especially those due to age, and does not aim to predict a relationship between a control input (infused anesthetic dose) and system state (commonly, a function of electroencephalography (EEG) signal). In this work, we developed a control-ready patient model for closed-loop propofol-induced anesthesia using data recorded during a clinical study of EEG during general anesthesia in ten healthy volunteers. We used principal component analysis to identify the low-dimensional state-space in which EEG signal evolves during anesthesia delivery. We parameterized the response of the EEG signal to changes in propofol target-site concentration using logistic models. We note that inter-individual differences in anesthetic sensitivity may be captured by varying a constant cofactor of the predicted effect-site concentration. We linked the EEG dose-response with the control input using a pharmacokinetic model. Finally, we present a simple nonlinear model predictive control <i>in silico</i> demonstration of how such a closed-loop system would work.</p>","PeriodicalId":74547,"journal":{"name":"Proceedings of the IFAC World Congress. International Federation of Automatic Control. World Congress","volume":"53 2","pages":"15870-15876"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236287/pdf/nihms-1599322.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IFAC World Congress. International Federation of Automatic Control. World Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ifacol.2020.12.243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Significant effort toward the automation of general anesthesia has been made in the past decade. One open challenge is in the development of control-ready patient models for closed-loop anesthesia delivery. Standard depth-of-anesthesia tracking does not readily capture inter-individual differences in response to anesthetics, especially those due to age, and does not aim to predict a relationship between a control input (infused anesthetic dose) and system state (commonly, a function of electroencephalography (EEG) signal). In this work, we developed a control-ready patient model for closed-loop propofol-induced anesthesia using data recorded during a clinical study of EEG during general anesthesia in ten healthy volunteers. We used principal component analysis to identify the low-dimensional state-space in which EEG signal evolves during anesthesia delivery. We parameterized the response of the EEG signal to changes in propofol target-site concentration using logistic models. We note that inter-individual differences in anesthetic sensitivity may be captured by varying a constant cofactor of the predicted effect-site concentration. We linked the EEG dose-response with the control input using a pharmacokinetic model. Finally, we present a simple nonlinear model predictive control in silico demonstration of how such a closed-loop system would work.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建人体全身麻醉期间脑电图信号的可控模型。
在过去十年中,为实现全身麻醉自动化做出了巨大努力。目前面临的一个挑战是开发可用于闭环麻醉的病人模型。标准的麻醉深度跟踪不能轻易捕捉到个体间对麻醉剂反应的差异,尤其是由于年龄造成的差异,也不能预测控制输入(注入的麻醉剂剂量)和系统状态(通常是脑电图(EEG)信号的函数)之间的关系。在这项工作中,我们利用对 10 名健康志愿者进行全身麻醉期间脑电图临床研究时记录的数据,开发了一个用于闭环异丙酚诱导麻醉的控制就绪患者模型。我们使用主成分分析法确定了麻醉过程中脑电信号演变的低维状态空间。我们使用逻辑模型对脑电信号对丙泊酚靶点浓度变化的反应进行了参数化。我们注意到,麻醉敏感性的个体间差异可通过改变预测效应部位浓度的恒定辅因子来捕捉。我们利用药代动力学模型将脑电图剂量反应与控制输入联系起来。最后,我们展示了一个简单的非线性模型预测控制硅学演示,说明这种闭环系统是如何工作的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acute pulmonary edema associated with acute coronary syndrome - a case report Analysis of the fragility in public procurement contracts in civil engineering works Staggered Terms for the Senate: Appointment Politics and the Ideological Composition of the Judiciary INDEX
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1