Fatma Kuncan, Yılmaz Kaya, Ramazan Tekin, Melih Kuncan
{"title":"A new approach for physical human activity recognition based on co-occurrence matrices.","authors":"Fatma Kuncan, Yılmaz Kaya, Ramazan Tekin, Melih Kuncan","doi":"10.1007/s11227-021-03921-2","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, it has been observed that many researchers have been working on different areas of detection, recognition and monitoring of human activities. The automatic determination of human physical activities is often referred to as human activity recognition (HAR). One of the most important technology that detects and tracks the activity of the human body is sensor-based HAR technology. In recent days, sensor-based HAR attracts attention in the field of computers due to its wide use in daily life and is a rapidly growing field of research. Activity recognition (AR) application is carried out by evaluating the signals obtained from various sensors placed in the human body. In this study, a new approach is proposed to extract features from sensor signals using HAR. The proposed approach is inspired by the Gray Level Co-Occurrence Matrix (GLCM) method, which is widely used in image processing, but it is applied to one-dimensional signals, unlike GLCM. Two datasets were used to test the proposed approach. The datasets were created from the signals obtained from the accelerometer, gyro and magnetometer sensors. Heralick features were obtained from co-occurrence matrix created after 1D-GLCM (One (1) Dimensional-Gray Level Co-Occurrence Matrix) was applied to the signals. HAR operation has been carried out for different scenarios using these features. Success rates of 96.66 and 93.88% were obtained for two datasets, respectively. It has been observed that the new approach proposed within the scope of the study provides high success rates for HAR applications. It is thought that the proposed approach can be used in the classification of different signals.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"78 1","pages":"1048-1070"},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11227-021-03921-2","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-021-03921-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 3
Abstract
In recent years, it has been observed that many researchers have been working on different areas of detection, recognition and monitoring of human activities. The automatic determination of human physical activities is often referred to as human activity recognition (HAR). One of the most important technology that detects and tracks the activity of the human body is sensor-based HAR technology. In recent days, sensor-based HAR attracts attention in the field of computers due to its wide use in daily life and is a rapidly growing field of research. Activity recognition (AR) application is carried out by evaluating the signals obtained from various sensors placed in the human body. In this study, a new approach is proposed to extract features from sensor signals using HAR. The proposed approach is inspired by the Gray Level Co-Occurrence Matrix (GLCM) method, which is widely used in image processing, but it is applied to one-dimensional signals, unlike GLCM. Two datasets were used to test the proposed approach. The datasets were created from the signals obtained from the accelerometer, gyro and magnetometer sensors. Heralick features were obtained from co-occurrence matrix created after 1D-GLCM (One (1) Dimensional-Gray Level Co-Occurrence Matrix) was applied to the signals. HAR operation has been carried out for different scenarios using these features. Success rates of 96.66 and 93.88% were obtained for two datasets, respectively. It has been observed that the new approach proposed within the scope of the study provides high success rates for HAR applications. It is thought that the proposed approach can be used in the classification of different signals.
期刊介绍:
The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs.
Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.