Predicting Goal-directed Attention Control Using Inverse-Reinforcement Learning.

Neurons, behavior, data analysis and theory Pub Date : 2021-01-01 Epub Date: 2021-04-20 DOI:10.51628/001c.22322
Gregory J Zelinsky, Yupei Chen, Seoyoung Ahn, Hossein Adeli, Zhibo Yang, Lihan Huang, Dimitrios Samaras, Minh Hoai
{"title":"Predicting Goal-directed Attention Control Using Inverse-Reinforcement Learning.","authors":"Gregory J Zelinsky, Yupei Chen, Seoyoung Ahn, Hossein Adeli, Zhibo Yang, Lihan Huang, Dimitrios Samaras, Minh Hoai","doi":"10.51628/001c.22322","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how goals control behavior is a question ripe for interrogation by new methods from machine learning. These methods require large and labeled datasets to train models. To annotate a large-scale image dataset with observed search fixations, we collected 16,184 fixations from people searching for either microwaves or clocks in a dataset of 4,366 images (MS-COCO). We then used this behaviorally-annotated dataset and the machine learning method of inverse-reinforcement learning (IRL) to learn target-specific reward functions and policies for these two target goals. Finally, we used these learned policies to predict the fixations of 60 new behavioral searchers (clock = 30, microwave = 30) in a disjoint test dataset of kitchen scenes depicting both a microwave and a clock (thus controlling for differences in low-level image contrast). We found that the IRL model predicted behavioral search efficiency and fixation-density maps using multiple metrics. Moreover, reward maps from the IRL model revealed target-specific patterns that suggest, not just attention guidance by target features, but also guidance by scene context (e.g., fixations along walls in the search of clocks). Using machine learning and the psychologically meaningful principle of reward, it is possible to learn the visual features used in goal-directed attention control.</p>","PeriodicalId":74289,"journal":{"name":"Neurons, behavior, data analysis and theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8218820/pdf/nihms-1715365.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurons, behavior, data analysis and theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51628/001c.22322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how goals control behavior is a question ripe for interrogation by new methods from machine learning. These methods require large and labeled datasets to train models. To annotate a large-scale image dataset with observed search fixations, we collected 16,184 fixations from people searching for either microwaves or clocks in a dataset of 4,366 images (MS-COCO). We then used this behaviorally-annotated dataset and the machine learning method of inverse-reinforcement learning (IRL) to learn target-specific reward functions and policies for these two target goals. Finally, we used these learned policies to predict the fixations of 60 new behavioral searchers (clock = 30, microwave = 30) in a disjoint test dataset of kitchen scenes depicting both a microwave and a clock (thus controlling for differences in low-level image contrast). We found that the IRL model predicted behavioral search efficiency and fixation-density maps using multiple metrics. Moreover, reward maps from the IRL model revealed target-specific patterns that suggest, not just attention guidance by target features, but also guidance by scene context (e.g., fixations along walls in the search of clocks). Using machine learning and the psychologically meaningful principle of reward, it is possible to learn the visual features used in goal-directed attention control.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用反强化学习预测目标导向的注意力控制
了解目标是如何控制行为的,是机器学习新方法的一个成熟问题。这些方法需要大量的标注数据集来训练模型。为了用观察到的搜索定点来注释大规模图像数据集,我们在一个包含 4366 张图像的数据集(MS-COCO)中收集了 16184 次人们搜索微波炉或时钟的定点。然后,我们利用这个经过行为注释的数据集和反强化学习(IRL)的机器学习方法,为这两个目标学习特定目标的奖励函数和策略。最后,我们使用这些学习到的策略来预测 60 名新行为搜索者(时钟 = 30,微波炉 = 30)在微波炉和时钟的厨房场景(从而控制低级图像对比度的差异)中的固定行为。我们发现,IRL 模型通过多种指标预测了行为搜索效率和固定密度图。此外,IRL 模型的奖励图揭示了特定目标的模式,表明注意力不仅受目标特征的引导,还受场景背景的引导(例如,在搜索时钟时沿着墙壁的定点)。利用机器学习和心理学上有意义的奖励原则,可以学习目标引导的注意力控制中使用的视觉特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling Spontaneous Firing Activity of the Motor Cortex in a Spiking Neural Network with Random and Local Connectivity Expressive architectures enhance interpretability of dynamics-based neural population models Probabilistic representations as building blocks for higher-level vision Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis Frontal effective connectivity increases with task demands and time on task: a Dynamic Causal Model of electrocorticogram in macaque monkeys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1