Marina L. Gening , Gerald B. Pier , Nikolay E. Nifantiev
{"title":"Broadly protective semi-synthetic glycoconjugate vaccine against pathogens capable of producing poly-β-(1→6)-N-acetyl-d-glucosamine exopolysaccharide","authors":"Marina L. Gening , Gerald B. Pier , Nikolay E. Nifantiev","doi":"10.1016/j.ddtec.2020.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Poly-β-(1→6)-<em>N</em>-acetylglucosamine (PNAG) was first discovered as a major component of biofilms formed by <span><em>Staphylococcus aureus</em></span><span> and some other staphylococci but later this exopolysaccharide was also found to be produced by pathogens of various nature. This common antigen is considered as a promising target for construction of a broadly protective vaccine. Extensive studies of PNAG, its de-</span><em>N</em>-acetylated derivative (dPNAG, containing around 15% of residual <em>N</em><span><span>-acetates) and their conjugates with </span>Tetanus Toxoid (TT) revealed the crucial role of de-</span><em>N</em><span>-acetylated glucosamine units for the induction of protective immunity. Conjugates of synthetic penta- (5GlcNH</span><sub>2</sub>) and nona-β-(1→6)-<span>d</span>-glucosamines (9GlcNH<sub>2</sub>) were tested <em>in vitro</em><span> and in different animal models and proved to be effective in passive and active protection against different microbial pathogens. Presently conjugate 5GlcNH</span><sub>2</sub><span>-TT is being produced under GMP conditions and undergoes safety and effectiveness evaluation in humans and economically important animals. Current review summarizes all stages of this long-termed study.</span></p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":"35 ","pages":"Pages 13-21"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.09.002","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740674920300147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 7
Abstract
Poly-β-(1→6)-N-acetylglucosamine (PNAG) was first discovered as a major component of biofilms formed by Staphylococcus aureus and some other staphylococci but later this exopolysaccharide was also found to be produced by pathogens of various nature. This common antigen is considered as a promising target for construction of a broadly protective vaccine. Extensive studies of PNAG, its de-N-acetylated derivative (dPNAG, containing around 15% of residual N-acetates) and their conjugates with Tetanus Toxoid (TT) revealed the crucial role of de-N-acetylated glucosamine units for the induction of protective immunity. Conjugates of synthetic penta- (5GlcNH2) and nona-β-(1→6)-d-glucosamines (9GlcNH2) were tested in vitro and in different animal models and proved to be effective in passive and active protection against different microbial pathogens. Presently conjugate 5GlcNH2-TT is being produced under GMP conditions and undergoes safety and effectiveness evaluation in humans and economically important animals. Current review summarizes all stages of this long-termed study.
期刊介绍:
Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.