{"title":"Structure-based glycoconjugate vaccine design: The example of Group B Streptococcus type III capsular polysaccharide","authors":"Filippo Carboni, Roberto Adamo","doi":"10.1016/j.ddtec.2020.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial surface polysaccharides are important virulence factors and targets for vaccine development. Glycoconjugate vaccines, obtained by covalently linking carbohydrates and proteins, are well established tools for prevention of bacterial infections. Elucidation of the minimal portion involved in the interactions with functional antibodies is of utmost importance for the understanding of their mechanism of induction of protective immune responses and the design of synthetic glycan based vaccines. Typically, this is achieved by combination of different techniques, which include ELISA, glycoarray, Surface Plasmon Resonance in conjunction with approaches for mapping at atomic level the position involved in binding, such as Saturation Transfer NMR and X-ray crystallography. This review provides an overview of the structural studies performed to map glycan epitopes (<em>glycotopes</em>), with focus on the highly complex structure of Group <em>B Streptococcus</em> type III (GBSIII) capsular polysaccharide. Furthermore, it describes the rational process followed to translate the obtained information into the design of a protective glycoconjugate vaccine based on a well-defined synthetic glycan epitope.</p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":"35 ","pages":"Pages 23-33"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.11.003","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S174067492030024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 5
Abstract
Microbial surface polysaccharides are important virulence factors and targets for vaccine development. Glycoconjugate vaccines, obtained by covalently linking carbohydrates and proteins, are well established tools for prevention of bacterial infections. Elucidation of the minimal portion involved in the interactions with functional antibodies is of utmost importance for the understanding of their mechanism of induction of protective immune responses and the design of synthetic glycan based vaccines. Typically, this is achieved by combination of different techniques, which include ELISA, glycoarray, Surface Plasmon Resonance in conjunction with approaches for mapping at atomic level the position involved in binding, such as Saturation Transfer NMR and X-ray crystallography. This review provides an overview of the structural studies performed to map glycan epitopes (glycotopes), with focus on the highly complex structure of Group B Streptococcus type III (GBSIII) capsular polysaccharide. Furthermore, it describes the rational process followed to translate the obtained information into the design of a protective glycoconjugate vaccine based on a well-defined synthetic glycan epitope.
期刊介绍:
Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.