{"title":"Molecular property prediction: recent trends in the era of artificial intelligence","authors":"Jie Shen , Christos A. Nicolaou","doi":"10.1016/j.ddtec.2020.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial intelligence (AI) has become a powerful tool in many fields, including drug discovery. Among various AI applications, molecular property prediction can have more significant immediate impact to the drug discovery process since most algorithms and methods use predicted properties to evaluate, select, and generate molecules. Herein, we provide a brief review of the state-of-art molecular property prediction methodologies and discuss examples reported recently. We highlight key techniques that have been applied to molecular property prediction such as learned representation, multi-task learning, transfer learning, and federated learning. We also point out some critical but less discussed issues such as data set quality, benchmark, model performance evaluation, and prediction confidence quantification.</p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":"32 ","pages":"Pages 29-36"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.05.001","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740674920300032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 50
Abstract
Artificial intelligence (AI) has become a powerful tool in many fields, including drug discovery. Among various AI applications, molecular property prediction can have more significant immediate impact to the drug discovery process since most algorithms and methods use predicted properties to evaluate, select, and generate molecules. Herein, we provide a brief review of the state-of-art molecular property prediction methodologies and discuss examples reported recently. We highlight key techniques that have been applied to molecular property prediction such as learned representation, multi-task learning, transfer learning, and federated learning. We also point out some critical but less discussed issues such as data set quality, benchmark, model performance evaluation, and prediction confidence quantification.
期刊介绍:
Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.