Exploiting the neuroprotective effects of α-klotho to tackle ageing- and neurodegeneration-related cognitive dysfunction.

Q4 Neuroscience Neuronal signaling Pub Date : 2021-06-14 eCollection Date: 2021-06-01 DOI:10.1042/NS20200101
Kelsey Hanson, Kate Fisher, Nigel M Hooper
{"title":"Exploiting the neuroprotective effects of α-klotho to tackle ageing- and neurodegeneration-related cognitive dysfunction.","authors":"Kelsey Hanson, Kate Fisher, Nigel M Hooper","doi":"10.1042/NS20200101","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive dysfunction is a key symptom of ageing and neurodegenerative disorders, such as Alzheimer's disease (AD). Strategies to enhance cognition would impact the quality of life for a significant proportion of the ageing population. The α-klotho protein may protect against cognitive decline through multiple mechanisms: such as promoting optimal synaptic function via activation of N-methyl-d-aspartate (NMDA) receptor signalling; stimulating the antioxidant defence system; reducing inflammation; promoting autophagy and enhancing clearance of amyloid-β. However, the molecular and cellular pathways by which α-klotho mediates these neuroprotective functions have yet to be fully elucidated. Key questions remain unanswered: which form of α-klotho (transmembrane, soluble or secreted) mediates its cognitive enhancing properties; what is the neuronal receptor for α-klotho and which signalling pathways are activated by α-klotho in the brain to enhance cognition; how does peripherally administered α-klotho mediate neuroprotection; and what is the molecular basis for the beneficial effect of the VS variant of α-klotho? In this review, we summarise the recent research on neuronal α-klotho and discuss how the neuroprotective properties of α-klotho could be exploited to tackle age- and neurodegeneration-associated cognitive dysfunction.</p>","PeriodicalId":74287,"journal":{"name":"Neuronal signaling","volume":"5 2","pages":"NS20200101"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204227/pdf/","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuronal signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/NS20200101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 10

Abstract

Cognitive dysfunction is a key symptom of ageing and neurodegenerative disorders, such as Alzheimer's disease (AD). Strategies to enhance cognition would impact the quality of life for a significant proportion of the ageing population. The α-klotho protein may protect against cognitive decline through multiple mechanisms: such as promoting optimal synaptic function via activation of N-methyl-d-aspartate (NMDA) receptor signalling; stimulating the antioxidant defence system; reducing inflammation; promoting autophagy and enhancing clearance of amyloid-β. However, the molecular and cellular pathways by which α-klotho mediates these neuroprotective functions have yet to be fully elucidated. Key questions remain unanswered: which form of α-klotho (transmembrane, soluble or secreted) mediates its cognitive enhancing properties; what is the neuronal receptor for α-klotho and which signalling pathways are activated by α-klotho in the brain to enhance cognition; how does peripherally administered α-klotho mediate neuroprotection; and what is the molecular basis for the beneficial effect of the VS variant of α-klotho? In this review, we summarise the recent research on neuronal α-klotho and discuss how the neuroprotective properties of α-klotho could be exploited to tackle age- and neurodegeneration-associated cognitive dysfunction.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用α-klotho的神经保护作用来解决衰老和神经退行性相关的认知功能障碍。
认知功能障碍是衰老和神经退行性疾病(如阿尔茨海默病)的主要症状。提高认识的战略将影响很大一部分老龄人口的生活质量。α-klotho蛋白可以通过多种机制防止认知能力下降:例如通过激活N-甲基-d-天冬氨酸(NMDA)受体信号来促进最佳突触功能;刺激抗氧化防御系统;减少炎症;促进自噬和提高淀粉样蛋白-β的清除率。然而,α-klotho介导这些神经保护功能的分子和细胞途径尚未完全阐明。关键问题仍未得到解答:哪种形式的α-klotho(跨膜、可溶性或分泌型)介导其认知增强特性;α-klotho的神经元受体是什么?大脑中哪些信号通路被α-kloto激活以增强认知;外周给药的α-克洛托如何介导神经保护作用;α-克洛托的VS变体的有益作用的分子基础是什么?在这篇综述中,我们总结了最近对神经元α-klotho的研究,并讨论了如何利用α-kloto的神经保护特性来解决与年龄和神经退行性变相关的认知功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Neural mechanisms of dopamine function in learning and memory in Caenorhabditis elegans Cytokine activity in Parkinson's disease. Modelling Alzheimer’s disease in a Dish – Dissecting Amyloid-β Metabolism in Human Neurons Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders Inhibition of insulin-degrading enzyme in human neurons promotes amyloid-β deposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1