{"title":"The Impacts of Climate Change on Ticks and Tick-Borne Disease Risk.","authors":"Lucy Gilbert","doi":"10.1146/annurev-ento-052720-094533","DOIUrl":null,"url":null,"abstract":"<p><p>Ticks exist on all continents and carry more zoonotic pathogens than any other type of vector. Ticks spend most of their lives in the external environment away from the host and are thus expected to be affected by changes in climate. Most empirical and theoretical studies demonstrate or predict range shifts or increases in ticks and tick-borne diseases, but there can be a lot of heterogeneity in such predictions. Tick-borne disease systems are complex, and determining whether changes are due to climate change or other drivers can be difficult. Modeling studies can help tease apart and understand the roles of different drivers of change. Predictive models can also be invaluable in projecting changes according to different climate change scenarios. However, validating these models remains challenging, and estimating uncertainty in predictions is essential. Another focus for future research should be assessing the resilience of ticks and tick-borne pathogens to climate change.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"66 ","pages":"373-388"},"PeriodicalIF":15.0000,"publicationDate":"2021-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-ento-052720-094533","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 51
Abstract
Ticks exist on all continents and carry more zoonotic pathogens than any other type of vector. Ticks spend most of their lives in the external environment away from the host and are thus expected to be affected by changes in climate. Most empirical and theoretical studies demonstrate or predict range shifts or increases in ticks and tick-borne diseases, but there can be a lot of heterogeneity in such predictions. Tick-borne disease systems are complex, and determining whether changes are due to climate change or other drivers can be difficult. Modeling studies can help tease apart and understand the roles of different drivers of change. Predictive models can also be invaluable in projecting changes according to different climate change scenarios. However, validating these models remains challenging, and estimating uncertainty in predictions is essential. Another focus for future research should be assessing the resilience of ticks and tick-borne pathogens to climate change.
期刊介绍:
The Annual Review of Entomology, a publication dating back to 1956, offers comprehensive reviews of significant developments in the field of entomology.The scope of coverage spans various areas, including:biochemistry and physiology, morphology and development, behavior and neuroscience, ecology, agricultural entomology and pest management, biological control, forest entomology, acarines and other arthropods, medical and veterinary entomology, pathology, vectors of plant disease, genetics, genomics, and systematics, evolution, and biogeography.