Manganese Dioxide (α-MnO₂) and Graphene Oxide (GO) Nanocomposites: An Efficient Promotor for the Oxidative Deprotection of Trimethylsilyl, Tetrahydropyranyl and Methoxymethyl Ethers.

Pouran Pourayoob Foumani, Hassan Tajik, Farhad Shirini, Shahed Hassanpoor
{"title":"Manganese Dioxide (<i>α</i>-MnO₂) and Graphene Oxide (GO) Nanocomposites: An Efficient Promotor for the Oxidative Deprotection of Trimethylsilyl, Tetrahydropyranyl and Methoxymethyl Ethers.","authors":"Pouran Pourayoob Foumani,&nbsp;Hassan Tajik,&nbsp;Farhad Shirini,&nbsp;Shahed Hassanpoor","doi":"10.1166/jnn.2021.19519","DOIUrl":null,"url":null,"abstract":"<p><p>Manganese dioxide (<i>α</i>-MnO₂) and graphene oxide (GO nanocomposites were prepared and successfully characterized using Fourier-transform infrared (FT-IR), field emission scanning-electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDX) mapping methods and Xray diffraction (XRD) analyses. This reagent is an efficient catalyst for the aerobic oxidation of trimethylsilyl (TMS), tetrahedropyranyl (THP), and methoxymethyl ethers (MOM) to their corresponding carbonyl compounds in the presence of K₂CO₃. All reactions were performed in <i>n</i>-hexane under mild and completely heterogeneous reaction conditions. Our novel method has the advantages of excellent yields, short reaction times, availability and reusability of the catalyst and simple and easy work-up procedure compared to the conventional methods reported in the literature.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Manganese dioxide (α-MnO₂) and graphene oxide (GO nanocomposites were prepared and successfully characterized using Fourier-transform infrared (FT-IR), field emission scanning-electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDX) mapping methods and Xray diffraction (XRD) analyses. This reagent is an efficient catalyst for the aerobic oxidation of trimethylsilyl (TMS), tetrahedropyranyl (THP), and methoxymethyl ethers (MOM) to their corresponding carbonyl compounds in the presence of K₂CO₃. All reactions were performed in n-hexane under mild and completely heterogeneous reaction conditions. Our novel method has the advantages of excellent yields, short reaction times, availability and reusability of the catalyst and simple and easy work-up procedure compared to the conventional methods reported in the literature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化锰(α- mno2)和氧化石墨烯(GO)纳米复合材料:三甲基硅基、四氢吡喃和甲氧基甲基醚氧化脱保护的高效促进剂
制备了二氧化锰(α-MnO₂)和氧化石墨烯(GO)纳米复合材料,并利用傅里叶变换红外(FT-IR)、场发射扫描电镜(FE-SEM)、能量色散x射线能谱(EDX)作图方法和x射线衍射(XRD)分析成功地对其进行了表征。该试剂是一种有效的催化剂,可以在K₂CO₃的存在下,将三甲基硅基(TMS)、四烷基吡啶(THP)和甲氧基甲基醚(MOM)有氧氧化成相应的羰基化合物。所有反应均在正己烷中进行,反应条件温和且完全非均相。与文献报道的传统方法相比,该方法具有收率高、反应时间短、催化剂的可获得性和可重复使用性以及操作简便等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of nanoscience and nanotechnology
Journal of nanoscience and nanotechnology 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.6 months
期刊介绍: JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.
期刊最新文献
Preparing and Applying Silver Nanoparticles in Conductive Ink and Inkjet Painting. Observation of Dominant Nuclei and Magic-Sized CdS Nanoparticles in a Single-Phase System. A Simple Dilution Method for Preparation of Different Aggregates from Oleic Acid/CHAPSO Bicelles. Small Hematite Nanoparticles from the Kiruna-Type Ore; Evaluation of Declined Balance Limit of the Attrition Process and Their Catalytic Properties. The Release of Indium Ion Derived from Epithelial Cells and Macrophages Solubilization Contribute to Pneumotoxicity Induced by Indium Oxide Nanoparticles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1