Compatibility of Photoluminescence Properties in ScPO₄:Eu3+, Tb3+ Phosphor for White Light Emitting Diodes.

Jian Zhou, Jian-Wen Zhao, Si-Li Ren, Jun Dong
{"title":"Compatibility of Photoluminescence Properties in ScPO₄:Eu<sup>3+</sup>, Tb<sup>3+</sup> Phosphor for White Light Emitting Diodes.","authors":"Jian Zhou,&nbsp;Jian-Wen Zhao,&nbsp;Si-Li Ren,&nbsp;Jun Dong","doi":"10.1166/jnn.2021.19507","DOIUrl":null,"url":null,"abstract":"<p><p>ScPO₄:Eu<sup>3+</sup>, Tb<sup>3+</sup> phosphors with tuned emission color were prepared through high temperature solid-state reaction. The structure, morphology and photoluminescence properties of the title samples were collected by XRD, SEM and fluorescence spectrophotometer, respectively. Co-doping Eu<sup>3+</sup> and Tb<sup>3+</sup> in ScPO₄ does not change the body-centered tetragonal structure of the host. And the morphology remains essentially unchanged except for slight agglomeration. Changing the ratio of Tb<sup>3+</sup>/Eu<sup>3+</sup>, the tuned emission can be achieved, the color could be adjusted from green through yellow to orange-red. The ScPO₄:0.03Tb<sup>3+</sup>, 0.03Eu<sup>3+</sup> phosphor with high thermal stability as the single matrix phosphor can be suitable for the NUV-pumped white LED. The white LED with a color rendering index of 86.5 and a correlated color temperature of 3470 K has been generated by packaging BAM:Eu<sup>2+</sup> with ScPO₄:0.03Tb<sup>3+</sup>, 0.03Eu<sup>3+</sup> on an NUV-InGaN chip.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"5890-5895"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ScPO₄:Eu3+, Tb3+ phosphors with tuned emission color were prepared through high temperature solid-state reaction. The structure, morphology and photoluminescence properties of the title samples were collected by XRD, SEM and fluorescence spectrophotometer, respectively. Co-doping Eu3+ and Tb3+ in ScPO₄ does not change the body-centered tetragonal structure of the host. And the morphology remains essentially unchanged except for slight agglomeration. Changing the ratio of Tb3+/Eu3+, the tuned emission can be achieved, the color could be adjusted from green through yellow to orange-red. The ScPO₄:0.03Tb3+, 0.03Eu3+ phosphor with high thermal stability as the single matrix phosphor can be suitable for the NUV-pumped white LED. The white LED with a color rendering index of 86.5 and a correlated color temperature of 3470 K has been generated by packaging BAM:Eu2+ with ScPO₄:0.03Tb3+, 0.03Eu3+ on an NUV-InGaN chip.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
白光二极管用ScPO₄:Eu3+, Tb3+荧光粉的光致发光性能相容性
采用高温固相反应法制备了具有调谐发射色的ScPO₄:Eu3+, Tb3+荧光粉。分别用XRD、SEM和荧光分光光度计对标题样品的结构、形貌和光致发光性能进行了表征。Eu3+和Tb3+在ScPO₄中共掺杂不会改变宿主的体心四方结构。除了轻微的结块外,形貌基本保持不变。改变Tb3+/Eu3+的比例,可以实现调谐发射,颜色可以从绿色到黄色调节到橙红色。采用高热稳定性的ScPO₄:0.03Tb3+, 0.03Eu3+荧光粉作为单基质荧光粉,可适用于紫外泵浦白光LED。将BAM:Eu2+与ScPO₄:0.03Tb3+, 0.03Eu3+封装在NUV-InGaN芯片上,生成了显色指数为86.5,相关色温为3470 K的白光LED。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of nanoscience and nanotechnology
Journal of nanoscience and nanotechnology 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.6 months
期刊介绍: JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.
期刊最新文献
Efficacy and Safety of Guihuang Formula in Treating Type III Prostatitis Patients with Dampness-Heat and Blood Stasis Syndrome: A Randomized Controlled Trial. Unveiling degradation mechanism of PAHs by a Sphingobium strain from a microbial consortium. Modifier pathways in polyglutamine (PolyQ) diseases: from genetic screens to drug targets. Preparing and Applying Silver Nanoparticles in Conductive Ink and Inkjet Painting. Observation of Dominant Nuclei and Magic-Sized CdS Nanoparticles in a Single-Phase System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1