{"title":"A Review on Green Synthesis and Applications of Iron Oxide Nanoparticles.","authors":"Rachana Yadwade, Saili Kirtiwar, Balaprasad Ankamwar","doi":"10.1166/jnn.2021.19285","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-fabrication of iron oxide nanoparticles by using different sources of plants, plant parts and microbial cells have become a great topic of interest nowadays due to its eco-friendly nature. The stabilizing and capping agents in biological sources are biocompatible, stable and non-toxic which make its use beneficial for various biomedical applications. The bacteria are able to utilize metal ions and convert them into their respective nanoparticles by secreting different biomolecules. The plants and plant parts contain different types of phytochemicals which play a key role in synthesis and bio-fabrication of nanoparticles. Iron oxide nanoparticles are known to have various applications in the fields of medicine, environment etc. This review summarizes the applications of iron oxide nanoparticles as antimicrobial agent, drug delivery agent, material for removal of heavy metals and dyes from aqueous system etc. Due to these wide applications of iron oxide nanoparticles its demand in various fields is increasing considerably. This review describes different approaches which are used for biosynthesis of iron oxide nanoparticles and their applications. The review also summarizes about the surface modification strategies of iron oxide nanoparticles by using different polymers, polyelectrolytes which can be used for <i>in-vivo</i> applications.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"5812-5834"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Bio-fabrication of iron oxide nanoparticles by using different sources of plants, plant parts and microbial cells have become a great topic of interest nowadays due to its eco-friendly nature. The stabilizing and capping agents in biological sources are biocompatible, stable and non-toxic which make its use beneficial for various biomedical applications. The bacteria are able to utilize metal ions and convert them into their respective nanoparticles by secreting different biomolecules. The plants and plant parts contain different types of phytochemicals which play a key role in synthesis and bio-fabrication of nanoparticles. Iron oxide nanoparticles are known to have various applications in the fields of medicine, environment etc. This review summarizes the applications of iron oxide nanoparticles as antimicrobial agent, drug delivery agent, material for removal of heavy metals and dyes from aqueous system etc. Due to these wide applications of iron oxide nanoparticles its demand in various fields is increasing considerably. This review describes different approaches which are used for biosynthesis of iron oxide nanoparticles and their applications. The review also summarizes about the surface modification strategies of iron oxide nanoparticles by using different polymers, polyelectrolytes which can be used for in-vivo applications.
期刊介绍:
JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.