Arenst Andreas Arie, Shealyn Lenora, Hans Kristianto, Ratna Frida Susanti, Joong Kee Lee
{"title":"Potato Peel Based Carbon-Sulfur Composite as Cathode Materials for Lithium Sulfur Battery.","authors":"Arenst Andreas Arie, Shealyn Lenora, Hans Kristianto, Ratna Frida Susanti, Joong Kee Lee","doi":"10.1166/jnn.2021.19288","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium sulfur battery has become one of the promising rechargeable battery systems to replace the conventional lithium ion battery. Commonly, it uses carbon-sulfur composites as cathode materials. Biomass based carbons has an important role in enhancing its electrochemical characteristics due to the high conductivity and porous structures. Here, potato peel wastes have been utilized to prepare porous carbon lithium sulfur battery through hydrothermal carbonization followed by the chemical activation method using KOH. After sulfur loading, as prepared carbon-sulfur composite shows stable coulombic efficiencies of above 98% and a reversible specific capacity of 804 mAh g<sup>-1</sup> after 100 cycles at current density of 100 mA g<sup>-1</sup>. These excellent electrochemical properties can be attributed to the unique structure of PPWC showing mesoporous structure with large specific surface areas. These results show the potential application of potato peel waste based porous carbon as electrode's materials for lithium sulfur battery.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"6243-6247"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Lithium sulfur battery has become one of the promising rechargeable battery systems to replace the conventional lithium ion battery. Commonly, it uses carbon-sulfur composites as cathode materials. Biomass based carbons has an important role in enhancing its electrochemical characteristics due to the high conductivity and porous structures. Here, potato peel wastes have been utilized to prepare porous carbon lithium sulfur battery through hydrothermal carbonization followed by the chemical activation method using KOH. After sulfur loading, as prepared carbon-sulfur composite shows stable coulombic efficiencies of above 98% and a reversible specific capacity of 804 mAh g-1 after 100 cycles at current density of 100 mA g-1. These excellent electrochemical properties can be attributed to the unique structure of PPWC showing mesoporous structure with large specific surface areas. These results show the potential application of potato peel waste based porous carbon as electrode's materials for lithium sulfur battery.
锂硫电池已成为替代传统锂离子电池的极具发展前景的可充电电池系统之一。通常采用碳硫复合材料作为正极材料。生物质基碳具有高导电性和多孔结构,对提高其电化学性能具有重要作用。本课题以马铃薯皮废料为原料,通过水热炭化后KOH化学活化法制备多孔碳锂硫电池。负载硫后,碳硫复合材料的库仑效率稳定在98%以上,在100 mA g-1电流密度下循环100次后的可逆比容量为804 mAh g-1。这些优异的电化学性能可归因于PPWC独特的结构,具有较大的比表面积和介孔结构。这些结果显示了马铃薯皮废基多孔碳作为锂硫电池电极材料的潜在应用前景。
期刊介绍:
JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.