Green and Simple Synthesis of Photoluminescence-Tunable Carbon Dots for Sensing and Cell Imaging Applications.

Dong Sun, Shu-Jun Li, Chun-Feng Wang, Tian-Tian Liu, Guang-Yue Bai, Ke-Lei Zhuo
{"title":"Green and Simple Synthesis of Photoluminescence-Tunable Carbon Dots for Sensing and Cell Imaging Applications.","authors":"Dong Sun,&nbsp;Shu-Jun Li,&nbsp;Chun-Feng Wang,&nbsp;Tian-Tian Liu,&nbsp;Guang-Yue Bai,&nbsp;Ke-Lei Zhuo","doi":"10.1166/jnn.2021.19530","DOIUrl":null,"url":null,"abstract":"<p><p>Innovative nitrogen and boron co-doped carbon dots are hydrothermally produced using fructose, urea, and boric acid as precursors. The synthesized carbon dots possess a uniform morphology, and exhibit excellent fluorescence stability, tunable luminescence property, strong resistance to photobleaching, low-toxicity, and excellent biocompatibility. It is also found more dopant urea is conducive to the formation of the carbon dots with more B-N bonds, and shorter wavelength of fluorescence emission. Meanwhile, the synthesized carbon dots are well utilized as a photoluminescent probe for facile Hg<sup>2+</sup> determination and fluorescent imaging reagent in cells.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":"21 12","pages":"6101-6110"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Innovative nitrogen and boron co-doped carbon dots are hydrothermally produced using fructose, urea, and boric acid as precursors. The synthesized carbon dots possess a uniform morphology, and exhibit excellent fluorescence stability, tunable luminescence property, strong resistance to photobleaching, low-toxicity, and excellent biocompatibility. It is also found more dopant urea is conducive to the formation of the carbon dots with more B-N bonds, and shorter wavelength of fluorescence emission. Meanwhile, the synthesized carbon dots are well utilized as a photoluminescent probe for facile Hg2+ determination and fluorescent imaging reagent in cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绿色和简单合成用于传感和细胞成像的光致发光可调碳点。
采用果糖、尿素和硼酸为前体,采用水热法制备了新型氮硼共掺杂碳点。合成的碳点形貌均匀,具有优良的荧光稳定性、发光性能可调、抗光漂白能力强、低毒性和良好的生物相容性。同时发现,掺杂尿素越多,有利于形成B-N键越多的碳点,荧光发射波长越短。同时,所合成的碳点可以作为细胞内Hg2+测定的光致发光探针和荧光成像试剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of nanoscience and nanotechnology
Journal of nanoscience and nanotechnology 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.6 months
期刊介绍: JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.
期刊最新文献
Efficacy and Safety of Guihuang Formula in Treating Type III Prostatitis Patients with Dampness-Heat and Blood Stasis Syndrome: A Randomized Controlled Trial. Unveiling degradation mechanism of PAHs by a Sphingobium strain from a microbial consortium. Modifier pathways in polyglutamine (PolyQ) diseases: from genetic screens to drug targets. Preparing and Applying Silver Nanoparticles in Conductive Ink and Inkjet Painting. Observation of Dominant Nuclei and Magic-Sized CdS Nanoparticles in a Single-Phase System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1