A SARS-CoV-2 Spike Binding DNA Aptamer that Inhibits Pseudovirus Infection by an RBD-Independent Mechanism.

Anton Schmitz, Anna Weber, Mehtap Bayin, Stefan Breuers, Volkmar Fieberg, Michael Famulok, Günter Mayer
{"title":"A SARS-CoV-2 Spike Binding DNA Aptamer that Inhibits Pseudovirus Infection by an RBD-Independent Mechanism.","authors":"Anton Schmitz,&nbsp;Anna Weber,&nbsp;Mehtap Bayin,&nbsp;Stefan Breuers,&nbsp;Volkmar Fieberg,&nbsp;Michael Famulok,&nbsp;Günter Mayer","doi":"10.1002/ange.202100316","DOIUrl":null,"url":null,"abstract":"<p><p>The receptor binding domain (RBD) of the spike glycoprotein of the coronavirus SARS-CoV-2 (CoV2-S) binds to the human angiotensin-converting enzyme 2 (ACE2) representing the initial contact point for leveraging the infection cascade. We used an automated selection process and identified an aptamer that specifically interacts with CoV2-S. The aptamer does not bind to the RBD of CoV2-S and does not block the interaction of CoV2-S with ACE2. Nevertheless, infection studies revealed potent and specific inhibition of pseudoviral infection by the aptamer. The present study opens up new vistas in developing SARS-CoV2 infection inhibitors, independent of blocking the ACE2 interaction of the virus, and harnesses aptamers as potential drug candidates and tools to disentangle hitherto inaccessible infection modalities, which is of particular interest in light of the increasing number of escape mutants that are currently being reported.</p>","PeriodicalId":72198,"journal":{"name":"Angewandte Chemie (Weinheim an der Bergstrasse, Germany)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ange.202100316","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ange.202100316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The receptor binding domain (RBD) of the spike glycoprotein of the coronavirus SARS-CoV-2 (CoV2-S) binds to the human angiotensin-converting enzyme 2 (ACE2) representing the initial contact point for leveraging the infection cascade. We used an automated selection process and identified an aptamer that specifically interacts with CoV2-S. The aptamer does not bind to the RBD of CoV2-S and does not block the interaction of CoV2-S with ACE2. Nevertheless, infection studies revealed potent and specific inhibition of pseudoviral infection by the aptamer. The present study opens up new vistas in developing SARS-CoV2 infection inhibitors, independent of blocking the ACE2 interaction of the virus, and harnesses aptamers as potential drug candidates and tools to disentangle hitherto inaccessible infection modalities, which is of particular interest in light of the increasing number of escape mutants that are currently being reported.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SARS-CoV-2刺突结合DNA适体通过rbd独立机制抑制假病毒感染
冠状病毒严重急性呼吸系统综合征冠状病毒2型刺突糖蛋白(CoV2-S)的受体结合结构域(RBD)与人血管紧张素转化酶2(ACE2)结合,后者代表了利用感染级联反应的初始接触点。我们使用了自动选择过程,并鉴定了一种与CoV2-S特异性相互作用的适体。适体不与CoV2-S的RBD结合,也不阻断CoV2-S与ACE2的相互作用。然而,感染研究揭示了适体对假病毒感染的有效和特异性抑制作用。目前的研究为开发严重急性呼吸系统综合征冠状病毒2型感染抑制剂开辟了新的前景,该抑制剂独立于阻断病毒的ACE2相互作用,并利用适体作为潜在的候选药物和工具来解开迄今为止无法获得的感染模式,鉴于目前报道的逃逸突变体数量不断增加,这一点尤其令人感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthese von α-Arylacrylamiden via Lewis Base vermitteltem Aryl/Wasserstoff-Austausch. Transmembrane Shuttling of Photosynthetically Produced Electrons to Propel Extracellular Biocatalytic Redox Reactions in a Modular Fashion. Mass Spectrometry Detection and Imaging of a Non-Covalent Protein-Drug Complex in Tissue from Orally Dosed Rats. A Ruthenium(II) Polypyridyl Complex Disrupts Actin Cytoskeleton Assembly and Blocks Cytokinesis. Stabilisierung von Elektronentransferwegen erlaubt Stabilität von Biohybrid-Photoelektroden über Jahre.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1