{"title":"The Social Life of Viruses.","authors":"Rafael Sanjuán","doi":"10.1146/annurev-virology-091919-071712","DOIUrl":null,"url":null,"abstract":"<p><p>Despite their simplicity, viruses exhibit certain types of social interactions. Situations in which a given virus achieves higher fitness in combination with other members of the viral population have been described at the level of transmission, replication, suppression of host immune responses, and host killing, enabling the evolution of viral cooperation. Although cellular coinfection with multiple viral particles is the typical playground for these interactions, cooperation between viruses infecting different cells is also established through cellular and viral-encoded communication systems. In general, the stability of cooperation is compromised by cheater genotypes, as best exemplified by defective interfering particles. As predicted by social evolution theory, cheater invasion can be avoided when cooperators interact preferentially with other cooperators, a situation that is promoted in spatially structured populations. Processes such as transmission bottlenecks, organ compartmentalization, localized spread of infection foci, superinfection exclusion, and even discrete intracellular replication centers promote multilevel spatial structuring in viruses.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"8 1","pages":"183-199"},"PeriodicalIF":8.1000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-virology-091919-071712","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 20
Abstract
Despite their simplicity, viruses exhibit certain types of social interactions. Situations in which a given virus achieves higher fitness in combination with other members of the viral population have been described at the level of transmission, replication, suppression of host immune responses, and host killing, enabling the evolution of viral cooperation. Although cellular coinfection with multiple viral particles is the typical playground for these interactions, cooperation between viruses infecting different cells is also established through cellular and viral-encoded communication systems. In general, the stability of cooperation is compromised by cheater genotypes, as best exemplified by defective interfering particles. As predicted by social evolution theory, cheater invasion can be avoided when cooperators interact preferentially with other cooperators, a situation that is promoted in spatially structured populations. Processes such as transmission bottlenecks, organ compartmentalization, localized spread of infection foci, superinfection exclusion, and even discrete intracellular replication centers promote multilevel spatial structuring in viruses.
期刊介绍:
The Annual Review of Virology serves as a conduit for disseminating thrilling advancements in our comprehension of viruses spanning animals, plants, bacteria, archaea, fungi, and protozoa. Its reviews illuminate novel concepts and trajectories in basic virology, elucidating viral disease mechanisms, exploring virus-host interactions, and scrutinizing cellular and immune responses to virus infection. These reviews underscore the exceptional capacity of viruses as potent probes for investigating cellular function.