Ahmed Al-Rawi, Karen Grepin, Xiaosu Li, Rosemary Morgan, Clare Wenham, Julia Smith
{"title":"Investigating Public Discourses Around Gender and COVID-19: a Social Media Analysis of Twitter Data.","authors":"Ahmed Al-Rawi, Karen Grepin, Xiaosu Li, Rosemary Morgan, Clare Wenham, Julia Smith","doi":"10.1007/s41666-021-00102-x","DOIUrl":null,"url":null,"abstract":"<p><p>We collected over 50 million tweets referencing COVID-19 to understand the public's gendered discourses and concerns during the pandemic. We filtered the tweets based on English language and among three gender categories: men, women, and sexual and gender minorities. We used a mixed-method approach that included topic modelling, sentiment analysis, and text mining extraction procedures including words' mapping, proximity plots, top hashtags and mentions, and most retweeted posts. Our findings show stark differences among the different genders. In relation to women, we found a salient discussion on the risks of domestic violence due to the lockdown especially towards women and girls, while emphasizing financial challenges. The public discourses around SGM mostly revolved around blood donation concerns, which is a reminder of the discrimination against some of these communities during the early days of the HIV/AIDS epidemic. Finally, the discourses around men were focused on the high death rates and the sentiment analysis results showed more negative tweets than among the other genders. The study concludes that Twitter influencers can drive major online discussions which can be useful in addressing communication needs during pandemics.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41666-021-00102-x","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-021-00102-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 12
Abstract
We collected over 50 million tweets referencing COVID-19 to understand the public's gendered discourses and concerns during the pandemic. We filtered the tweets based on English language and among three gender categories: men, women, and sexual and gender minorities. We used a mixed-method approach that included topic modelling, sentiment analysis, and text mining extraction procedures including words' mapping, proximity plots, top hashtags and mentions, and most retweeted posts. Our findings show stark differences among the different genders. In relation to women, we found a salient discussion on the risks of domestic violence due to the lockdown especially towards women and girls, while emphasizing financial challenges. The public discourses around SGM mostly revolved around blood donation concerns, which is a reminder of the discrimination against some of these communities during the early days of the HIV/AIDS epidemic. Finally, the discourses around men were focused on the high death rates and the sentiment analysis results showed more negative tweets than among the other genders. The study concludes that Twitter influencers can drive major online discussions which can be useful in addressing communication needs during pandemics.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis