Preeyaporn Koedrith, Md Mujibur Rahman, Yu Jin Jang, Dong Yeop Shin, Young Rok Seo
{"title":"Nanoparticles: Weighing the Pros and Cons from an Eco-genotoxicological Perspective.","authors":"Preeyaporn Koedrith, Md Mujibur Rahman, Yu Jin Jang, Dong Yeop Shin, Young Rok Seo","doi":"10.15430/JCP.2021.26.2.83","DOIUrl":null,"url":null,"abstract":"<p><p>The exponential growth of nanotechnology and the industrial production have raised concerns over its impact on human and environmental health and safety (EHS). Although there has been substantial progress in the assessment of pristine nanoparticle toxicities, their EHS impacts require greater clarification. In this review, we discuss studies that have assessed nanoparticle eco-genotoxicity in different test systems and their fate in the environment as well as the considerable confounding factors that may complicate the results. We highlight key mechanisms of nanoparticle-mediated genotoxicity. Then we discuss the reliability of endpoint assays, such as the comet assay, the most favored assessment technique because of its versatility to measure low levels of DNA strand breakage, and the micronucleus assay, which is complementary to the former because of its greater ability to detect chromosomal DNA fragmentation. We also address the current recommendations on experimental design, including environmentally relevant concentrations and suitable exposure duration to avoid false-positive or -negative results. The genotoxicity of nanoparticles depends on their physicochemical features and the presence of co-pollutants. Thus, the effect of environmental processes (e.g., aggregation and agglomeration, adsorption, and transformation of nanoparticles) would account for when determining the actual genotoxicity relevant to environmental systems, and assay procedures must be standardized. Indeed, the engineered nanoparticles offer potential applications in different fields including biomedicine, environment, agriculture, and industry. Toxicological pathways and the potential risk factors related to genotoxic responses in biological organisms and environments need to be clarified before appropriate and sustainable applications of nanoparticles can be established.</p>","PeriodicalId":15120,"journal":{"name":"Journal of Cancer Prevention","volume":"26 2","pages":"83-97"},"PeriodicalIF":2.5000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/85/53/jcp-26-2-83.PMC8249203.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Prevention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15430/JCP.2021.26.2.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The exponential growth of nanotechnology and the industrial production have raised concerns over its impact on human and environmental health and safety (EHS). Although there has been substantial progress in the assessment of pristine nanoparticle toxicities, their EHS impacts require greater clarification. In this review, we discuss studies that have assessed nanoparticle eco-genotoxicity in different test systems and their fate in the environment as well as the considerable confounding factors that may complicate the results. We highlight key mechanisms of nanoparticle-mediated genotoxicity. Then we discuss the reliability of endpoint assays, such as the comet assay, the most favored assessment technique because of its versatility to measure low levels of DNA strand breakage, and the micronucleus assay, which is complementary to the former because of its greater ability to detect chromosomal DNA fragmentation. We also address the current recommendations on experimental design, including environmentally relevant concentrations and suitable exposure duration to avoid false-positive or -negative results. The genotoxicity of nanoparticles depends on their physicochemical features and the presence of co-pollutants. Thus, the effect of environmental processes (e.g., aggregation and agglomeration, adsorption, and transformation of nanoparticles) would account for when determining the actual genotoxicity relevant to environmental systems, and assay procedures must be standardized. Indeed, the engineered nanoparticles offer potential applications in different fields including biomedicine, environment, agriculture, and industry. Toxicological pathways and the potential risk factors related to genotoxic responses in biological organisms and environments need to be clarified before appropriate and sustainable applications of nanoparticles can be established.
纳米技术和工业生产的指数式增长引起了人们对其对人类和环境健康与安全(EHS)影响的关注。尽管在评估原始纳米粒子毒性方面取得了重大进展,但仍需进一步阐明其对 EHS 的影响。在本综述中,我们讨论了在不同测试系统中评估纳米粒子生态遗传毒性的研究及其在环境中的归宿,以及可能使结果复杂化的大量干扰因素。我们强调了纳米粒子介导的遗传毒性的关键机制。然后,我们讨论了终点测定的可靠性,如彗星测定和微核试验,前者是最受欢迎的评估技术,因为它可以测量低水平的 DNA 链断裂,后者则是前者的补充,因为它检测染色体 DNA 断裂的能力更强。我们还讨论了目前有关实验设计的建议,包括与环境相关的浓度和适当的暴露时间,以避免出现假阳性或阴性结果。纳米粒子的遗传毒性取决于其物理化学特征和共污染物的存在。因此,在确定与环境系统相关的实际基因毒性时,应考虑环境过程(如纳米粒子的聚集和团聚、吸附和转化)的影响,而且检测程序必须标准化。事实上,工程纳米粒子在生物医学、环境、农业和工业等不同领域都有潜在的应用前景。在确定纳米粒子的适当和可持续应用之前,需要明确生物有机体和环境中与遗传毒性反应相关的毒理学途径和潜在风险因素。