Adult Hippocampal Neurogenesis and Alzheimer's Disease: Novel Application of Mesenchymal Stem Cells and their Role in Hippocampal Neurogenesis.

IF 1.5 Q3 MEDICINE, RESEARCH & EXPERIMENTAL International Journal of Molecular and Cellular Medicine Pub Date : 2021-01-01 Epub Date: 2021-05-22 DOI:10.22088/IJMCM.BUMS.10.1.1
Mahdi Noureddini, Saeid Bagheri-Mohammadi
{"title":"Adult Hippocampal Neurogenesis and Alzheimer's Disease: Novel Application of Mesenchymal Stem Cells and their Role in Hippocampal Neurogenesis.","authors":"Mahdi Noureddini,&nbsp;Saeid Bagheri-Mohammadi","doi":"10.22088/IJMCM.BUMS.10.1.1","DOIUrl":null,"url":null,"abstract":"<p><p>The neurogenesis can occur in two regions of the adult mammalian brain throughout the lifespan: the subgranular zone of the hippocampal dentate gyrus, and the subventricular zone of the lateral ventricle. The proliferation and maturation of neural progenitor cells are tightly regulated through intrinsic and extrinsic factors. The integration of maturated cells into the circuitry of the adult hippocampus emphasizes the importance of adult hippocampal neurogenesis in learning and memory. There is a large body of evidence demonstrating that alteration in the neurogenesis process in the adult hippocampus results in an early event in the course of Alzheimer's disease (AD). In AD condition, the number and maturation of neurons declines progressively in the hippocampus. Innovative therapies are required to modulate brain homeostasis. Mesenchymal stem cells (MSCs) hold an immense potential to regulate the neurogenesis process, and are currently tested in some brain-related disorders, such as AD. Therefore, the aim of this review is to discuss the use of MSCs to regulate endogenous adult neurogenesis and their significant impact on future strategies for the treatment of AD.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256831/pdf/","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular and Cellular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22088/IJMCM.BUMS.10.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 9

Abstract

The neurogenesis can occur in two regions of the adult mammalian brain throughout the lifespan: the subgranular zone of the hippocampal dentate gyrus, and the subventricular zone of the lateral ventricle. The proliferation and maturation of neural progenitor cells are tightly regulated through intrinsic and extrinsic factors. The integration of maturated cells into the circuitry of the adult hippocampus emphasizes the importance of adult hippocampal neurogenesis in learning and memory. There is a large body of evidence demonstrating that alteration in the neurogenesis process in the adult hippocampus results in an early event in the course of Alzheimer's disease (AD). In AD condition, the number and maturation of neurons declines progressively in the hippocampus. Innovative therapies are required to modulate brain homeostasis. Mesenchymal stem cells (MSCs) hold an immense potential to regulate the neurogenesis process, and are currently tested in some brain-related disorders, such as AD. Therefore, the aim of this review is to discuss the use of MSCs to regulate endogenous adult neurogenesis and their significant impact on future strategies for the treatment of AD.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
成人海马神经发生与阿尔茨海默病:间充质干细胞的新应用及其在海马神经发生中的作用。
成年哺乳动物一生中可在大脑的两个区域发生神经发生:海马齿状回的颗粒下区和侧脑室的室下区。神经祖细胞的增殖和成熟受到内外因素的严格调控。成熟细胞整合到成人海马体回路中,强调了成人海马体神经发生在学习和记忆中的重要性。大量证据表明,成人海马神经发生过程的改变导致阿尔茨海默病(AD)病程的早期事件。在阿尔茨海默病中,海马神经元的数量和成熟度逐渐下降。需要创新疗法来调节大脑的内稳态。间充质干细胞(MSCs)在调节神经发生过程中具有巨大的潜力,目前在一些脑相关疾病(如AD)中进行了测试。因此,本综述的目的是讨论利用MSCs调节内源性成人神经发生及其对未来治疗AD策略的重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: The International Journal of Molecular and Cellular Medicine (IJMCM) is a peer-reviewed, quarterly publication of Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran. The journal covers all cellular & molecular biology and medicine disciplines such as the genetic basis of disease, biomarker discovery in diagnosis and treatment, genomics and proteomics, bioinformatics, computer applications in human biology, stem cells and tissue engineering, medical biotechnology, nanomedicine, cellular processes related to growth, death and survival, clinical biochemistry, molecular & cellular immunology, molecular and cellular aspects of infectious disease and cancer research. IJMCM is a free access journal. All open access articles published in IJMCM are distributed under the terms of the Creative Commons Attribution CC BY. The journal doesn''t have any submission and article processing charges (APCs).
期刊最新文献
Cytoprotective Effect of Gallic Acid against Injuries Promoted by Therapeutic Ionizing Radiation in Preosteoblast Cells. Dysregulation of LncRNAs ANRIL, MALAT1, and LINC00305 in Coronary Slow Flow Patients: Implications for Inflammation and Endothelial Dysfunction. Evaluation of the Cytotoxicity of Secondary Bioactive Compounds Produced by Streptomyces in Soil against a Colon Cancer Cell Line. Evaluation of the Immune Checkpoints, TIM-3 and PD-1, as well as Anti-Inflammatory Cytokines IL-10, and TGF-β along with Diseases Activity in Chronic Spontaneous Urticaria. Evaluations of Biomarkers CDX1 and CDX2 in Gastric Cancer Prognosis: A Meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1