{"title":"Propofol alleviates neuropathic pain in chronic constriction injury rat models via the microRNA-140-3p/Jagged-1 peptide/Notch signaling pathway.","authors":"Fang Cheng, Wei Qin, Ai-Xing Yang, Feng-Feng Yan, Yu Chen, Jian-Xin Ma","doi":"10.1002/syn.22219","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic constriction injury (CCI) of the sciatic nerve was used to establish neuropathic pain (NP) models in rats. CCI rats were then treated with propofol (Pro) and their paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were measured. In addition, the expression patterns of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-10 were detected. CCI rats treated with propofol were further injected with antagomiR-140-3p to verify the role of miR-140-3p in propofol's analgesic actions. In addition to confirming the relationship between miR-140-3p and JAG1, the expression patterns of JAG1 itself were detected. Propofol-treated CCI rats were also injected with Ad-JAG1 (adenovirus-packaged JAG1 overexpression vector and Ad-NC) to test the role of JAG1 in propofol's analgesic mechanism of action. Finally, the levels of JAG1 and Notch pathway-related proteins were detected RESULTS: Propofol was found to alleviate NP, including thermal hyperalgesia and mechanical pain threshold. Propofol could also ameliorate neuroinflammation by up-regulating the expression of IL-10 and inhibiting the release of TNF-α and IL-1β. Mechanically, propofol enhanced the amount of miR-140-3p in CCI rats via the regulation of JAG1. Down-regulation of miR-140-3p, or up-regulation of JAG1, could reduce the protective effect of propofol against NP. Propofol inhibited the activation of Notch signaling via miR-140-3p/JAG1 to realize its analgesic effect CONCLUSION: Our findings indicated that propofol inhibits inflammatory responses and the Notch signaling pathway via miR-140-3p/JAG1 to alleviate NP. These data provide evidence to support a potential clinical therapy for NP.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"75 10","pages":"e22219"},"PeriodicalIF":1.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/syn.22219","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synapse","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/syn.22219","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 6
Abstract
Chronic constriction injury (CCI) of the sciatic nerve was used to establish neuropathic pain (NP) models in rats. CCI rats were then treated with propofol (Pro) and their paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were measured. In addition, the expression patterns of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-10 were detected. CCI rats treated with propofol were further injected with antagomiR-140-3p to verify the role of miR-140-3p in propofol's analgesic actions. In addition to confirming the relationship between miR-140-3p and JAG1, the expression patterns of JAG1 itself were detected. Propofol-treated CCI rats were also injected with Ad-JAG1 (adenovirus-packaged JAG1 overexpression vector and Ad-NC) to test the role of JAG1 in propofol's analgesic mechanism of action. Finally, the levels of JAG1 and Notch pathway-related proteins were detected RESULTS: Propofol was found to alleviate NP, including thermal hyperalgesia and mechanical pain threshold. Propofol could also ameliorate neuroinflammation by up-regulating the expression of IL-10 and inhibiting the release of TNF-α and IL-1β. Mechanically, propofol enhanced the amount of miR-140-3p in CCI rats via the regulation of JAG1. Down-regulation of miR-140-3p, or up-regulation of JAG1, could reduce the protective effect of propofol against NP. Propofol inhibited the activation of Notch signaling via miR-140-3p/JAG1 to realize its analgesic effect CONCLUSION: Our findings indicated that propofol inhibits inflammatory responses and the Notch signaling pathway via miR-140-3p/JAG1 to alleviate NP. These data provide evidence to support a potential clinical therapy for NP.
期刊介绍:
SYNAPSE publishes articles concerned with all aspects of synaptic structure and function. This includes neurotransmitters, neuropeptides, neuromodulators, receptors, gap junctions, metabolism, plasticity, circuitry, mathematical modeling, ion channels, patch recording, single unit recording, development, behavior, pathology, toxicology, etc.