T-Cell Activation: Post-Infection Diagnostic Tool for COVID-19.

IF 1.1 4区 医学 Q3 BIOLOGY Folia Biologica Pub Date : 2021-01-01 DOI:10.14712/fb2021067010016
P Simara, L Tesarova, I Tapuchova, J Celerova, I Koutna
{"title":"T-Cell Activation: Post-Infection Diagnostic Tool for COVID-19.","authors":"P Simara, L Tesarova, I Tapuchova, J Celerova, I Koutna","doi":"10.14712/fb2021067010016","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 is caused by the SARS-CoV-2 virus and has spread globally in 2020. Cellular immunity may serve as an important functional marker of the disease, especially in the asymptomatic cases. Blood samples were collected from 46 convalescent donors with a history of COVID-19 and 38 control donors. Quantification of the T-cell response upon contact with SARS-CoV-2 proteins in vitro was based on IFN-γ. Significantly higher numbers of activated cells were measured in patients who underwent COVID-19. Anti-SARS-CoV-2 T cells were detected weeks after the active virus disappeared from the organism. Repeated sample collection after five months proved that the T-cell activation was weaker in time in 79 % of the patients. In the majority of cases, the CD4+ helper T-cell subpopulation was responsible for the immune reaction. Moreover, different viral proteins triggered activation in CD4+ helper and in CD8+ cytotoxic T cells. Together, these findings suggest that the T-cell activation level identifies the individuals who underwent COVID-19 and may become a diagnostic tool for the disease.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"67 1","pages":"16-27"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Biologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14712/fb2021067010016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

COVID-19 is caused by the SARS-CoV-2 virus and has spread globally in 2020. Cellular immunity may serve as an important functional marker of the disease, especially in the asymptomatic cases. Blood samples were collected from 46 convalescent donors with a history of COVID-19 and 38 control donors. Quantification of the T-cell response upon contact with SARS-CoV-2 proteins in vitro was based on IFN-γ. Significantly higher numbers of activated cells were measured in patients who underwent COVID-19. Anti-SARS-CoV-2 T cells were detected weeks after the active virus disappeared from the organism. Repeated sample collection after five months proved that the T-cell activation was weaker in time in 79 % of the patients. In the majority of cases, the CD4+ helper T-cell subpopulation was responsible for the immune reaction. Moreover, different viral proteins triggered activation in CD4+ helper and in CD8+ cytotoxic T cells. Together, these findings suggest that the T-cell activation level identifies the individuals who underwent COVID-19 and may become a diagnostic tool for the disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
t细胞活化:COVID-19感染后诊断工具
COVID-19是由SARS-CoV-2病毒引起的,并于2020年在全球传播。细胞免疫可能是该病的重要功能标志物,特别是在无症状病例中。采集了46例有COVID-19病史的恢复期献血者和38例对照献血者的血液样本。t细胞在体外与SARS-CoV-2蛋白接触后的反应是基于IFN-γ定量的。在感染COVID-19的患者中检测到的活化细胞数量明显更高。在活性病毒从生物体中消失几周后检测到抗sars - cov -2 T细胞。5个月后的重复样本采集证明,79%的患者的t细胞激活在时间上较弱。在大多数情况下,CD4+辅助性t细胞亚群负责免疫反应。此外,不同的病毒蛋白触发CD4+辅助细胞和CD8+细胞毒性T细胞的活化。总之,这些发现表明,t细胞激活水平可以识别患有COVID-19的个体,并可能成为该疾病的诊断工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Folia Biologica
Folia Biologica 医学-生物学
CiteScore
1.40
自引率
0.00%
发文量
5
审稿时长
3 months
期刊介绍: Journal of Cellular and Molecular Biology publishes articles describing original research aimed at the elucidation of a wide range of questions of biology and medicine at the cellular and molecular levels. Studies on all organisms as well as on human cells and tissues are welcome.
期刊最新文献
Reactive Oxygen Species Modulate Th17/Treg Balance in Chlamydia psittaci Pneumonia via NLRP3/IL-1β/Caspase-1 Pathway Differentiation. Taurine Improved Autism-Like Behaviours and Defective Neurogenesis of the Hippocampus in BTBR Mice through the PTEN/mTOR/AKT Signalling Pathway. 70th Anniversary of Folia Biologica. Gallic Acid Alleviates Psoriasis Keratinization and Inflammation by Regulating BRD4 Expression. Parallel DNA/RNA NGS Using an Identical Target Enrichment Panel in the Analysis of Hereditary Cancer Predisposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1