{"title":"Mutational property of newly identified mutagen l-glutamic acid γ-hydrazide in Escherichia coli","authors":"Tomoya Maeda , Atsushi Shibai , Naomi Yokoi , Yumeko Tarusawa , Masako Kawada , Hazuki Kotani , Chikara Furusawa","doi":"10.1016/j.mrfmmm.2021.111759","DOIUrl":null,"url":null,"abstract":"<div><p>We previously found that an <span>l</span>-glutamine analog <span>l</span>-glutamic acid γ-hydrazide has high mutagenic activity through the high-throughput laboratory evolution of <em>Escherichia coli</em>. In this study, mutagenicity and mutational property of <span>l</span>-glutamic acid γ-hydrazide were examined by the Ames test and mutation accumulation experiments using <em>E. coli</em>. The Ames test revealed that <span>l</span>-glutamic acid γ-hydrazide showed higher mutagenic activity without metabolic activation than known mutagens 2-aminoanthracene, and cobalt(II) acetate tetrahydrate. This result indicates that <span>l</span>-glutamic acid γ-hydrazide does not require metabolic activation for mutagenic activity in <em>E. coli</em>. Mutation accumulation experiments and whole-genome sequencing analysis revealed the number and spectrum of the accumulated mutations with or without <span>l</span>-glutamic acid γ-hydrazide. In the presence of <span>l</span>-glutamic acid γ-hydrazide, MDS42 strain accumulated 392.3 ± 116.2 point mutations during 30 passages corresponding to 777 generations, while MDS42 strain accumulated 1.5 ± 2.5 point mutations without <span>l</span>-glutamic acid γ-hydrazide during 50 passages corresponding to 1341 generations. The mutational spectrum of <span>l</span>-glutamic acid γ-hydrazide was G/C to A/T transition (82.2 ± 4.3 %) and A/T to G/C transition (17.4 ± 4.3 %). These results indicated that <span>l</span>-glutamic acid γ-hydrazide has a strong mutagenic activity.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"823 ","pages":"Article 111759"},"PeriodicalIF":1.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mrfmmm.2021.111759","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510721000221","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
We previously found that an l-glutamine analog l-glutamic acid γ-hydrazide has high mutagenic activity through the high-throughput laboratory evolution of Escherichia coli. In this study, mutagenicity and mutational property of l-glutamic acid γ-hydrazide were examined by the Ames test and mutation accumulation experiments using E. coli. The Ames test revealed that l-glutamic acid γ-hydrazide showed higher mutagenic activity without metabolic activation than known mutagens 2-aminoanthracene, and cobalt(II) acetate tetrahydrate. This result indicates that l-glutamic acid γ-hydrazide does not require metabolic activation for mutagenic activity in E. coli. Mutation accumulation experiments and whole-genome sequencing analysis revealed the number and spectrum of the accumulated mutations with or without l-glutamic acid γ-hydrazide. In the presence of l-glutamic acid γ-hydrazide, MDS42 strain accumulated 392.3 ± 116.2 point mutations during 30 passages corresponding to 777 generations, while MDS42 strain accumulated 1.5 ± 2.5 point mutations without l-glutamic acid γ-hydrazide during 50 passages corresponding to 1341 generations. The mutational spectrum of l-glutamic acid γ-hydrazide was G/C to A/T transition (82.2 ± 4.3 %) and A/T to G/C transition (17.4 ± 4.3 %). These results indicated that l-glutamic acid γ-hydrazide has a strong mutagenic activity.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.