Electrochemical Affinity Assays/Sensors: Brief History and Current Status.

Kenneth R Wehmeyer, Ryan J White, Peter T Kissinger, William R Heineman
{"title":"Electrochemical Affinity Assays/Sensors: Brief History and Current Status.","authors":"Kenneth R Wehmeyer, Ryan J White, Peter T Kissinger, William R Heineman","doi":"10.1146/annurev-anchem-061417-125655","DOIUrl":null,"url":null,"abstract":"The advent of electrochemical affinity assays and sensors evolved from pioneering efforts in the 1970s to broaden the field of analytes accessible to the selective and sensitive performance of electrochemical detection. The foundation of electrochemical affinity assays/sensors is the specific capture of an analyte by an affinity element and the subsequent transduction of this event into a measurable signal. This review briefly covers the early development of affinity assays and then focuses on advances in the past decade. During this time, progress on electroactive labels, including the use of nanoparticles, quantum dots, organic and organometallic redox compounds, and enzymes with amplification schemes, has led to significant improvements in sensitivity. The emergence of nanomaterials along with microfabrication and microfluidics technology enabled research pathways that couple the ease of use of electrochemical detection for the development of devices that are more user friendly, disposable, and employable, such as lab-on-a-chip, paper, and wearable sensors.","PeriodicalId":72239,"journal":{"name":"Annual review of analytical chemistry (Palo Alto, Calif.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of analytical chemistry (Palo Alto, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-anchem-061417-125655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The advent of electrochemical affinity assays and sensors evolved from pioneering efforts in the 1970s to broaden the field of analytes accessible to the selective and sensitive performance of electrochemical detection. The foundation of electrochemical affinity assays/sensors is the specific capture of an analyte by an affinity element and the subsequent transduction of this event into a measurable signal. This review briefly covers the early development of affinity assays and then focuses on advances in the past decade. During this time, progress on electroactive labels, including the use of nanoparticles, quantum dots, organic and organometallic redox compounds, and enzymes with amplification schemes, has led to significant improvements in sensitivity. The emergence of nanomaterials along with microfabrication and microfluidics technology enabled research pathways that couple the ease of use of electrochemical detection for the development of devices that are more user friendly, disposable, and employable, such as lab-on-a-chip, paper, and wearable sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电化学亲和测定/传感器:简史和现状。
电化学亲和分析和传感器的出现是从20世纪70年代的开创性努力发展而来的,以扩大电化学检测的选择性和敏感性的分析物领域。电化学亲和分析/传感器的基础是通过亲和元件捕获被分析物,并随后将该事件转导成可测量的信号。这篇综述简要介绍了亲和测定的早期发展,然后重点介绍了过去十年的进展。在此期间,电活性标签的进展,包括纳米颗粒、量子点、有机和有机金属氧化还原化合物的使用,以及带有扩增方案的酶,导致了灵敏度的显著提高。纳米材料的出现,以及微加工和微流体技术的出现,使电化学检测的易用性与开发更用户友好、一次性和可雇用的设备(如芯片实验室、纸和可穿戴传感器)的研究途径相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear Electrokinetic Methods of Particles and Cells. The Present and Future Landscapes of Molecular Diagnostics. Emerging Areas in Undergraduate Analytical Chemistry Education: Microfluidics, Microcontrollers, and Chemometrics. Label-Free Optical Technologies to Enhance Noninvasive Endoscopic Imaging of Early-Stage Cancers. Maximizing Analytical Performance in Biomolecular Discovery with LC-MS: Focus on Psychiatric Disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1