Developmental exposure to the synthetic progestin, 17α-hydroxyprogesterone caproate, disrupts the mesocortical serotonin pathway and alters impulsive decision-making in rats

IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neurobiology Pub Date : 2021-07-28 DOI:10.1002/dneu.22847
Allyssa Fahrenkopf, Grace Li, Ruth I. Wood, Christine K. Wagner
{"title":"Developmental exposure to the synthetic progestin, 17α-hydroxyprogesterone caproate, disrupts the mesocortical serotonin pathway and alters impulsive decision-making in rats","authors":"Allyssa Fahrenkopf,&nbsp;Grace Li,&nbsp;Ruth I. Wood,&nbsp;Christine K. Wagner","doi":"10.1002/dneu.22847","DOIUrl":null,"url":null,"abstract":"<p>The synthetic progestin, 17α-hydroxyprogesterone caproate (17-OHPC), is administered to women at risk for preterm birth during a critical period of fetal development for mesocortical pathways. Yet, little information is available regarding the potential effects of 17-OHPC on the developing fetal brain. In rat models, the mesocortical serotonin pathway is sensitive to progestins. Progesterone receptor (PR) is expressed in layer 3 pyramidal neurons of medial prefrontal cortex (mPFC) and in serotonergic neurons of the dorsal raphe. The present study tested the hypothesis that exposure to 17-OHPC during development disrupts serotonergic innervation of the mPFC in adolescence and impairs behavior mediated by this pathway in adulthood. Administration of 17-OHPC from postnatal days 1–14 decreased the density of SERT-ir fibers within superficial and deep layers and decreased the density of synaptophysin-ir boutons in all layers of prelimbic mPFC at postnatal day 28. In addition, rats exposed to 17-OHPC during development were less likely to make impulsive choices in the Delay Discounting task, choosing the larger, delayed reward more often than controls at moderate delay times. Interestingly, 17-OHPC exposed rats were more likely to fail to make any choice (i.e., increased omissions) compared to controls at longer delays, suggesting disruptions in decision-making. These results suggest that further investigation is warranted in the clinical use of 17-OHPC to better inform a risk/benefit analysis of progestin use in pregnancy.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"81 6","pages":"763-773"},"PeriodicalIF":2.7000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/dneu.22847","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22847","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The synthetic progestin, 17α-hydroxyprogesterone caproate (17-OHPC), is administered to women at risk for preterm birth during a critical period of fetal development for mesocortical pathways. Yet, little information is available regarding the potential effects of 17-OHPC on the developing fetal brain. In rat models, the mesocortical serotonin pathway is sensitive to progestins. Progesterone receptor (PR) is expressed in layer 3 pyramidal neurons of medial prefrontal cortex (mPFC) and in serotonergic neurons of the dorsal raphe. The present study tested the hypothesis that exposure to 17-OHPC during development disrupts serotonergic innervation of the mPFC in adolescence and impairs behavior mediated by this pathway in adulthood. Administration of 17-OHPC from postnatal days 1–14 decreased the density of SERT-ir fibers within superficial and deep layers and decreased the density of synaptophysin-ir boutons in all layers of prelimbic mPFC at postnatal day 28. In addition, rats exposed to 17-OHPC during development were less likely to make impulsive choices in the Delay Discounting task, choosing the larger, delayed reward more often than controls at moderate delay times. Interestingly, 17-OHPC exposed rats were more likely to fail to make any choice (i.e., increased omissions) compared to controls at longer delays, suggesting disruptions in decision-making. These results suggest that further investigation is warranted in the clinical use of 17-OHPC to better inform a risk/benefit analysis of progestin use in pregnancy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大鼠在发育过程中暴露于合成黄体酮(17α-羟孕酮己酸酯)会破坏中脑皮层血清素通路并改变冲动决策
合成黄体酮17α-羟孕酮己酸酯(17-OHPC)用于在胎儿发育的关键时期有早产风险的妇女。然而,关于17-OHPC对胎儿大脑发育的潜在影响的信息很少。在大鼠模型中,中皮质血清素通路对黄体酮敏感。孕激素受体(PR)表达于内侧前额叶皮层(mPFC)第3层锥体神经元和中叶背5 -羟色胺能神经元。本研究验证了一个假设,即在发育过程中暴露于17-OHPC会破坏青春期mPFC的5 -羟色胺能神经支配,并损害成年期由该途径介导的行为。在出生后1-14天给予17-OHPC,可降低表层和深层SERT-ir纤维的密度,并在出生后28天降低边缘前mPFC各层突触素-ir扣的密度。此外,在发育过程中暴露于17-OHPC的大鼠在延迟折扣任务中不太可能做出冲动选择,在中等延迟时间下,大鼠比对照组更经常选择较大的延迟奖励。有趣的是,与对照组相比,17-OHPC暴露的大鼠更有可能在更长的延迟时间内无法做出任何选择(即增加遗漏),这表明决策受到干扰。这些结果表明,有必要对17-OHPC的临床应用进行进一步的研究,以更好地为妊娠期使用黄体酮的风险/收益分析提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Developmental Neurobiology
Developmental Neurobiology 生物-发育生物学
CiteScore
6.50
自引率
0.00%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.
期刊最新文献
Overexpression of Growth Differentiation Factor 15 Reduces Neuronal Cell Damage Induced by Oxygen-Glucose Deprivation/Reoxygenation via Inhibiting Endoplasmic Reticulum Stress-Mediated Ferroptosis. Elevated Serum Homocysteine Levels Impair Embryonic Neurodevelopment by Dysregulating the Heat Shock Proteins. Investigating the Effect of Capric Acid on Antibiotic-Induced Autism-Like Behavior in Rodents. Novel Transgenic Zebrafish Lines to Study the CHRNA3-B4-A5 Gene Cluster Defective Hippocampal Primary Ciliary Function and Aberrant LKB1/AMPK Signaling Pathway Are Associated With the Inhibition of Autophagic Activity in Offspring Born to Mothers of Advanced Maternal Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1