Natalia Divanoglou, Despina Komninou, Eleni A Stea, Anagnostis Argiriou, Grigorios Papatzikas, Andreas Tsakalof, Kalliopi Pazaitou-Panayiotou, Marios K Georgakis, Eleni Petridou
{"title":"Association of Vitamin D Receptor Gene Polymorphisms with Serum Vitamin D Levels in a Greek Rural Population (Velestino Study).","authors":"Natalia Divanoglou, Despina Komninou, Eleni A Stea, Anagnostis Argiriou, Grigorios Papatzikas, Andreas Tsakalof, Kalliopi Pazaitou-Panayiotou, Marios K Georgakis, Eleni Petridou","doi":"10.1159/000514338","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>An alarming increase in vitamin D deficiency even in sunny regions highlights the need for a better understanding of the genetic background of the vitamin D endocrine system and the molecular mechanisms of gene polymorphisms of the vitamin D receptor (VDR). In this study, the serum levels of 25(OH)D3 were correlated with common VDR polymorphisms (ApaI, BsmI, FokI, and TaqI) in 98 subjects of a Greek homogeneous rural population.</p><p><strong>Methods: </strong>25(OH)D3 concentration was measured by ultra-HPLC, and the VDR gene polymorphisms were identified by quantitative real-time PCR followed by amplicon high-resolution melting analysis.</p><p><strong>Results: </strong>Subjects carrying either the B BsmI (OR: 0.52, 95% CI: 0.27-0.99) or t TaqI (OR: 2.06, 95%: 1.06-3.99) allele presented twice the risk for developing vitamin D deficiency compared to the reference allele. Moreover, subjects carrying 1, 2, or all 3 of these genotypes (BB/Bb, Tt/tt, and FF) demonstrated 2-fold (OR: 2.04, 95% CI: 0.42-9.92), 3.6-fold (OR: 3.62, 95% CI: 1.07-12.2), and 7-fold (OR: 6.92, 95% CI: 1.68-28.5) increased risk for low 25(OH)D3 levels, respectively.</p><p><strong>Conclusions: </strong>Our findings reveal a cumulative effect of specific VDR gene polymorphisms that may regulate vitamin D concentrations explaining, in part, the paradox of vitamin D deficiency in sunny regions, with important implications for precision medicine.</p>","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":"14 3","pages":"81-90"},"PeriodicalIF":2.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000514338","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifestyle Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000514338","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 14
Abstract
Background/aim: An alarming increase in vitamin D deficiency even in sunny regions highlights the need for a better understanding of the genetic background of the vitamin D endocrine system and the molecular mechanisms of gene polymorphisms of the vitamin D receptor (VDR). In this study, the serum levels of 25(OH)D3 were correlated with common VDR polymorphisms (ApaI, BsmI, FokI, and TaqI) in 98 subjects of a Greek homogeneous rural population.
Methods: 25(OH)D3 concentration was measured by ultra-HPLC, and the VDR gene polymorphisms were identified by quantitative real-time PCR followed by amplicon high-resolution melting analysis.
Results: Subjects carrying either the B BsmI (OR: 0.52, 95% CI: 0.27-0.99) or t TaqI (OR: 2.06, 95%: 1.06-3.99) allele presented twice the risk for developing vitamin D deficiency compared to the reference allele. Moreover, subjects carrying 1, 2, or all 3 of these genotypes (BB/Bb, Tt/tt, and FF) demonstrated 2-fold (OR: 2.04, 95% CI: 0.42-9.92), 3.6-fold (OR: 3.62, 95% CI: 1.07-12.2), and 7-fold (OR: 6.92, 95% CI: 1.68-28.5) increased risk for low 25(OH)D3 levels, respectively.
Conclusions: Our findings reveal a cumulative effect of specific VDR gene polymorphisms that may regulate vitamin D concentrations explaining, in part, the paradox of vitamin D deficiency in sunny regions, with important implications for precision medicine.
期刊介绍:
Lifestyle Genomics aims to provide a forum for highlighting new advances in the broad area of lifestyle-gene interactions and their influence on health and disease. The journal welcomes novel contributions that investigate how genetics may influence a person’s response to lifestyle factors, such as diet and nutrition, natural health products, physical activity, and sleep, amongst others. Additionally, contributions examining how lifestyle factors influence the expression/abundance of genes, proteins and metabolites in cell and animal models as well as in humans are also of interest. The journal will publish high-quality original research papers, brief research communications, reviews outlining timely advances in the field, and brief research methods pertaining to lifestyle genomics. It will also include a unique section under the heading “Market Place” presenting articles of companies active in the area of lifestyle genomics. Research articles will undergo rigorous scientific as well as statistical/bioinformatic review to ensure excellence.