A Near-Optimal Control Method for Stochastic Boolean Networks.

Q3 Mathematics Letters in Biomathematics Pub Date : 2020-05-04
Boris Aguilar, Pan Fang, Reinhard Laubenbacher, David Murrugarra
{"title":"A Near-Optimal Control Method for Stochastic Boolean Networks.","authors":"Boris Aguilar,&nbsp;Pan Fang,&nbsp;Reinhard Laubenbacher,&nbsp;David Murrugarra","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>One of the ultimate goals in systems biology is to develop control strategies to find efficient medical treatments. One step towards this goal is to develop methods for changing the state of a cell into a desirable state. We propose an efficient method that determines combinations of network perturbations to direct the system towards a predefined state. The method requires a set of control actions such as the silencing of a gene or the disruption of the interaction between two genes. An optimal control policy defined as the best intervention at each state of the system can be obtained using existing methods. However, these algorithms are computationally prohibitive for models with tens of nodes. Our method generates control actions that approximates the optimal control policy with high probability with a computational efficiency that does not depend on the size of the state space. Our C++ code is available at https://github.com/boaguilar/SDDScontrol.</p>","PeriodicalId":37222,"journal":{"name":"Letters in Biomathematics","volume":"7 1","pages":"67-80"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208226/pdf/nihms-1704776.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Biomathematics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

One of the ultimate goals in systems biology is to develop control strategies to find efficient medical treatments. One step towards this goal is to develop methods for changing the state of a cell into a desirable state. We propose an efficient method that determines combinations of network perturbations to direct the system towards a predefined state. The method requires a set of control actions such as the silencing of a gene or the disruption of the interaction between two genes. An optimal control policy defined as the best intervention at each state of the system can be obtained using existing methods. However, these algorithms are computationally prohibitive for models with tens of nodes. Our method generates control actions that approximates the optimal control policy with high probability with a computational efficiency that does not depend on the size of the state space. Our C++ code is available at https://github.com/boaguilar/SDDScontrol.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机布尔网络的一种近最优控制方法。
系统生物学的最终目标之一是制定控制策略,以找到有效的医学治疗方法。实现这一目标的一步是开发将细胞状态改变为理想状态的方法。我们提出了一种有效的方法来确定网络扰动的组合,以指导系统走向预定义的状态。这种方法需要一组控制动作,如沉默一个基因或破坏两个基因之间的相互作用。用现有的方法可以得到一个最优控制策略,即系统各状态下的最佳干预。然而,这些算法对于具有数十个节点的模型在计算上是令人望而却步的。我们的方法以高概率生成接近最优控制策略的控制动作,其计算效率不依赖于状态空间的大小。我们的c++代码可以在https://github.com/boaguilar/SDDScontrol上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Letters in Biomathematics
Letters in Biomathematics Mathematics-Statistics and Probability
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
GillesPy2: A Biochemical Modeling Framework for Simulation Driven Biological Discovery. Welcome to Volume 10 Modeling Seasonal Malaria Transmission: A Methodology Connecting Regional Temperatures to Mosquito and Parasite Developmental Traits Mathematical Analysis and Parameter Estimation of a Two-Patch Zika Model Modeling Assumptions, Mathematical Analysis and Mitigation Through Intervention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1