Induction of the NEK family of kinases in the lungs of mice subjected to cecal ligation and puncture model of sepsis.

IF 3.6 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Tissue Barriers Pub Date : 2021-10-02 Epub Date: 2021-06-20 DOI:10.1080/21688370.2021.1929787
Mohammad A Uddin, Mohammad S Akhter, Khadeja-Tul Kubra, Nektarios Barabutis
{"title":"Induction of the NEK family of kinases in the lungs of mice subjected to cecal ligation and puncture model of sepsis.","authors":"Mohammad A Uddin,&nbsp;Mohammad S Akhter,&nbsp;Khadeja-Tul Kubra,&nbsp;Nektarios Barabutis","doi":"10.1080/21688370.2021.1929787","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial barrier dysfunction (EBD) is the hallmark of Acute Respiratory Distress Syndrome (ARDS), a potentially lethal respiratory disorder associated with the COVID-19 - related deaths. Herein, we employed a cecal ligation and puncture (CLP) murine model of sepsis, to evaluate the effects of sepsis-induced EBD in the expression of the never in mitosis A (NIMA)-related kinases (NEKs). Members of that family of kinases regulate the activity and expression of the tumor suppressor P53, previously shown to modulate the actin cytoskeleton remodeling. Our results introduce the induction of NEK2, NEK3, NEK4, NEK7, and NEK9 in a CLP model of sepsis. Hence, we suggest that NEKs are involved in inflammatory processes and are holding the potential to serve as novel therapeutic targets for pathologies related to EBD, including ARDS and sepsis. Further studies will delineate the underlying molecular events and their interrelations with P53.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":"9 4","pages":"1929787"},"PeriodicalIF":3.6000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21688370.2021.1929787","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2021.1929787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 7

Abstract

Endothelial barrier dysfunction (EBD) is the hallmark of Acute Respiratory Distress Syndrome (ARDS), a potentially lethal respiratory disorder associated with the COVID-19 - related deaths. Herein, we employed a cecal ligation and puncture (CLP) murine model of sepsis, to evaluate the effects of sepsis-induced EBD in the expression of the never in mitosis A (NIMA)-related kinases (NEKs). Members of that family of kinases regulate the activity and expression of the tumor suppressor P53, previously shown to modulate the actin cytoskeleton remodeling. Our results introduce the induction of NEK2, NEK3, NEK4, NEK7, and NEK9 in a CLP model of sepsis. Hence, we suggest that NEKs are involved in inflammatory processes and are holding the potential to serve as novel therapeutic targets for pathologies related to EBD, including ARDS and sepsis. Further studies will delineate the underlying molecular events and their interrelations with P53.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盲肠结扎及脓毒症穿刺模型小鼠肺内NEK家族激酶的诱导
内皮屏障功能障碍(EBD)是急性呼吸窘迫综合征(ARDS)的标志,ARDS是一种与COVID-19相关死亡相关的潜在致命呼吸系统疾病。本研究采用盲肠结扎穿刺(CLP)小鼠脓毒症模型,评估脓毒症诱导的EBD对有丝分裂a (NIMA)相关激酶(NEKs)表达的影响。该激酶家族的成员调节肿瘤抑制因子P53的活性和表达,先前显示可调节肌动蛋白细胞骨架重塑。我们的研究结果介绍了NEK2、NEK3、NEK4、NEK7和NEK9在CLP脓毒症模型中的诱导作用。因此,我们认为NEKs参与炎症过程,并有潜力作为EBD相关病理的新治疗靶点,包括ARDS和败血症。进一步的研究将描述潜在的分子事件及其与P53的相互关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue Barriers
Tissue Barriers MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.60
自引率
6.50%
发文量
25
期刊介绍: Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.
期刊最新文献
Dengue virus NS1 hits hard at the barrier integrity of human cerebral microvascular endothelial cells via cellular microRNA dysregulations. The application of explants, crypts, and organoids as models in intestinal barrier research. Decellularized small intestine scaffolds: a potential xenograft for restoration of intestinal perforation. The amazing axolotl: robust kidney regeneration following acute kidney injury. Surface layer proteins from Lactobacillus helveticus ATCC® 15009™ affect the gut barrier morphology and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1