Effects of Sex and Group Size on Behavior and Brain Biogenic Amines in Short-Lived Turquoise Killifish (Nothobranchius furzeri).

IF 1.4 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY Zebrafish Pub Date : 2021-08-01 Epub Date: 2021-07-29 DOI:10.1089/zeb.2021.0001
Valentina Evsiukova, Egor Antonov, Alexander V Kulikov
{"title":"Effects of Sex and Group Size on Behavior and Brain Biogenic Amines in Short-Lived Turquoise Killifish (<i>Nothobranchius furzeri</i>).","authors":"Valentina Evsiukova,&nbsp;Egor Antonov,&nbsp;Alexander V Kulikov","doi":"10.1089/zeb.2021.0001","DOIUrl":null,"url":null,"abstract":"<p><p>Short-lived turquoise killifish (<i>Nothobranchius furzeri</i>) becomes a popular model species for neuroscience. However, the effects of sex and rearing conditions on behavior and brain monoamines in <i>N. furzeri</i> are unknown. In this article, we study the body mass, behavior in the novel tank diving test, levels of noradrenaline (NA), dopamine (DA), serotonin (5-HT), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) in the brain of 108 day-old <i>N. furzeri</i> males and females reared in small (one male and one or two females in 4-L tanks) and large (four males and four females in 25-L tanks) groups. Males were heavier and had a lower NA level in the brain compared with females. The behavior of males and females did not differ in the novel tank diving test. Their DA, 5-HT, DOPAC, and 5-HIAA levels in the brain did not differ too. Males from small groups spent more time near the tank's bottom. Rearing in small groups reduced the DA level in the female brain and the DOPAC level in female and male brains. However, group size did not affect body mass, 5-HT and 5-HIAA levels in the brain. Thus, group size is important for behavior and neuroscience studies of <i>N. furzeri</i>.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":"18 4","pages":"265-273"},"PeriodicalIF":1.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2021.0001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Short-lived turquoise killifish (Nothobranchius furzeri) becomes a popular model species for neuroscience. However, the effects of sex and rearing conditions on behavior and brain monoamines in N. furzeri are unknown. In this article, we study the body mass, behavior in the novel tank diving test, levels of noradrenaline (NA), dopamine (DA), serotonin (5-HT), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) in the brain of 108 day-old N. furzeri males and females reared in small (one male and one or two females in 4-L tanks) and large (four males and four females in 25-L tanks) groups. Males were heavier and had a lower NA level in the brain compared with females. The behavior of males and females did not differ in the novel tank diving test. Their DA, 5-HT, DOPAC, and 5-HIAA levels in the brain did not differ too. Males from small groups spent more time near the tank's bottom. Rearing in small groups reduced the DA level in the female brain and the DOPAC level in female and male brains. However, group size did not affect body mass, 5-HT and 5-HIAA levels in the brain. Thus, group size is important for behavior and neuroscience studies of N. furzeri.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
性别和群体大小对短寿绿松石鳉行为和脑生物胺的影响。
寿命短的绿松石鳉(Nothobranchius furzeri)成为神经科学研究的热门模式物种。然而,性别和饲养条件对褐绒夜蛾行为和脑单胺的影响尚不清楚。在本文中,我们研究了体重,行为在小说中坦克潜水测试,水平的去甲肾上腺素(NA)、多巴胺(DA)、5 -羟色胺(5 -),3,4-dihydroxyphenylacetic酸(DOPAC)和5-hydroxyindoleacetic酸(5-HIAA)在108年的大脑陈n的小鱼雄性和雌性饲养在小雌性(一个男性和一个或两个坦克)和大型(四个男人和四个女人25 l坦克)组。与女性相比,男性体重更重,大脑中的NA水平也更低。在新型的水箱潜水试验中,雄性和雌性的行为没有差异。他们大脑中的DA、5-羟色胺、DOPAC和5-HIAA水平也没有差异。小群体的雄性花更多的时间在水箱底部附近。小群体饲养降低了雌性大脑中的DA水平和雌性和雄性大脑中的DOPAC水平。然而,组的大小并不影响体重、大脑中5-羟色胺和5-HIAA的水平。因此,群体大小对于狐尾乳螨的行为和神经科学研究非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Zebrafish
Zebrafish DEVELOPMENTAL BIOLOGY-ZOOLOGY
CiteScore
3.60
自引率
5.00%
发文量
29
审稿时长
3 months
期刊介绍: Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease. Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage. Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community. TechnoFish features two types of articles: TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community Zebrafish coverage includes: Comparative genomics and evolution Molecular/cellular mechanisms of cell growth Genetic analysis of embryogenesis and disease Toxicological and infectious disease models Models for neurological disorders and aging New methods, tools, and experimental approaches Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.
期刊最新文献
Fish in a Dish: Using Zebrafish in Authentic Science Research Experiences for Under-represented High School Students from West Virginia. Novel Development of Magnetic Resonance Imaging to Quantify the Structural Anatomic Growth of Diverse Organs in Adult and Mutant Zebrafish. Zebrafish (Danio rerio) Gynogenetic Production by Heat Shock: Comparison Between Mitotic and Meiotic Treatment. Curcumin-Encapsulated Nanomicelles Promote Tissue Regeneration in Zebrafish Eleutheroembryo. Incorporating Primer Amplification Efficiencies in Quantitative Reverse Transcription Polymerase Chain Reaction Experiments; Considerations for Differential Gene Expression Analyses in Zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1