Unsupervised MRI Homogenization: Application to Pediatric Anterior Visual Pathway Segmentation.

Carlos Tor-Diez, Antonio R Porras, Roger J Packer, Robert A Avery, Marius George Linguraru
{"title":"Unsupervised MRI Homogenization: Application to Pediatric Anterior Visual Pathway Segmentation.","authors":"Carlos Tor-Diez,&nbsp;Antonio R Porras,&nbsp;Roger J Packer,&nbsp;Robert A Avery,&nbsp;Marius George Linguraru","doi":"10.1007/978-3-030-59861-7_19","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning strategies have become ubiquitous optimization tools for medical image analysis. With the appropriate amount of data, these approaches outperform classic methodologies in a variety of image processing tasks. However, rare diseases and pediatric imaging often lack extensive data. Specially, MRI are uncommon because they require sedation in young children. Moreover, the lack of standardization in MRI protocols introduces a strong variability between different datasets. In this paper, we present a general deep learning architecture for MRI homogenization that also provides the segmentation map of an anatomical region of interest. Homogenization is achieved using an unsupervised architecture based on variational autoencoder with cycle generative adversarial networks, which learns a common space (i.e. a representation of the optimal imaging protocol) using an unpaired image-to-image translation network. The segmentation is simultaneously generated by a supervised learning strategy. We evaluated our method segmenting the challenging anterior visual pathway using three brain T1-weighted MRI datasets (variable protocols and vendors). Our method significantly outperformed a non-homogenized multi-protocol U-Net.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"12436 ","pages":"180-188"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317430/pdf/nihms-1723844.pdf","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-59861-7_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Deep learning strategies have become ubiquitous optimization tools for medical image analysis. With the appropriate amount of data, these approaches outperform classic methodologies in a variety of image processing tasks. However, rare diseases and pediatric imaging often lack extensive data. Specially, MRI are uncommon because they require sedation in young children. Moreover, the lack of standardization in MRI protocols introduces a strong variability between different datasets. In this paper, we present a general deep learning architecture for MRI homogenization that also provides the segmentation map of an anatomical region of interest. Homogenization is achieved using an unsupervised architecture based on variational autoencoder with cycle generative adversarial networks, which learns a common space (i.e. a representation of the optimal imaging protocol) using an unpaired image-to-image translation network. The segmentation is simultaneously generated by a supervised learning strategy. We evaluated our method segmenting the challenging anterior visual pathway using three brain T1-weighted MRI datasets (variable protocols and vendors). Our method significantly outperformed a non-homogenized multi-protocol U-Net.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无监督MRI均匀化:应用于儿童前视通路分割。
深度学习策略已经成为医学图像分析中无处不在的优化工具。在适当的数据量下,这些方法在各种图像处理任务中优于经典方法。然而,罕见病和儿科影像学往往缺乏广泛的数据。特别地,核磁共振不常见,因为在幼儿中需要镇静。此外,MRI方案缺乏标准化,导致不同数据集之间存在很强的可变性。在本文中,我们提出了一种用于MRI均匀化的通用深度学习架构,该架构还提供了感兴趣的解剖区域的分割图。均匀化是使用基于循环生成对抗网络的变分自编码器的无监督架构来实现的,该架构使用非成对的图像到图像转换网络来学习公共空间(即最优成像协议的表示)。分割是通过监督学习策略同时生成的。我们使用三个脑t1加权MRI数据集(不同的协议和供应商)评估了我们分割具有挑战性的前视通路的方法。我们的方法明显优于非均质多协议U-Net。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic 3D Correspondence Prediction from Sparse Unsegmented Images. Class-Balanced Deep Learning with Adaptive Vector Scaling Loss for Dementia Stage Detection. MoViT: Memorizing Vision Transformers for Medical Image Analysis. Robust Unsupervised Super-Resolution of Infant MRI via Dual-Modal Deep Image Prior. IA-GCN: Interpretable Attention based Graph Convolutional Network for Disease Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1