Federated Galaxy: Biomedical Computing at the Frontier.

Enis Afgan, Vahid Jalili, Nuwan Goonasekera, James Taylor, Jeremy Goecks
{"title":"Federated Galaxy: Biomedical Computing at the Frontier.","authors":"Enis Afgan, Vahid Jalili, Nuwan Goonasekera, James Taylor, Jeremy Goecks","doi":"10.1109/cloud.2018.00124","DOIUrl":null,"url":null,"abstract":"<p><p>Biomedical data exploration requires integrative analyses of large datasets using a diverse ecosystem of tools. For more than a decade, the Galaxy project (https://galaxyproject.org) has provided researchers with a web-based, user-friendly, scalable data analysis framework complemented by a rich ecosystem of tools (https://usegalaxy.org/toolshed) used to perform genomic, proteomic, metabolomic, and imaging experiments. Galaxy can be deployed on the cloud (https://launch.usegalaxy.org), institutional computing clusters, and personal computers, or readily used on a number of public servers (e.g., https://usegalaxy.org). In this paper, we present our plan and progress towards creating Galaxy-as-a-Service-a federation of distributed data and computing resources into a panoptic analysis platform. Users can leverage a pool of public and institutional resources, in addition to plugging-in their private resources, helping answer the challenge of resource divergence across various Galaxy instances and enabling seamless analysis of biomedical data.</p>","PeriodicalId":93366,"journal":{"name":"Proceedings. IEEE International Conference on Cloud Computing","volume":"2018 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356149/pdf/nihms-1689939.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cloud.2018.00124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/9/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biomedical data exploration requires integrative analyses of large datasets using a diverse ecosystem of tools. For more than a decade, the Galaxy project (https://galaxyproject.org) has provided researchers with a web-based, user-friendly, scalable data analysis framework complemented by a rich ecosystem of tools (https://usegalaxy.org/toolshed) used to perform genomic, proteomic, metabolomic, and imaging experiments. Galaxy can be deployed on the cloud (https://launch.usegalaxy.org), institutional computing clusters, and personal computers, or readily used on a number of public servers (e.g., https://usegalaxy.org). In this paper, we present our plan and progress towards creating Galaxy-as-a-Service-a federation of distributed data and computing resources into a panoptic analysis platform. Users can leverage a pool of public and institutional resources, in addition to plugging-in their private resources, helping answer the challenge of resource divergence across various Galaxy instances and enabling seamless analysis of biomedical data.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联合星系:生物医学计算的前沿。
生物医学数据探索需要使用多种工具对大型数据集进行综合分析。十多年来,银河项目(https://galaxyproject.org)为研究人员提供了一个基于网络、用户友好、可扩展的数据分析框架,并辅以丰富的工具生态系统(https://usegalaxy.org/toolshed),用于执行基因组、蛋白质组、代谢组和成像实验。银河系统可以部署在云端(https://launch.usegalaxy.org)、机构计算集群和个人电脑上,也可以在一些公共服务器(如 https://usegalaxy.org)上随时使用。在本文中,我们将介绍创建 "银河即服务"(Galaxy-as-a-Service)的计划和进展--"银河即服务 "是将分布式数据和计算资源整合为一个全景分析平台。用户除了插入自己的私人资源外,还可以利用公共资源和机构资源池,帮助应对不同银河实例之间资源差异的挑战,实现生物医学数据的无缝分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ArcaDB: A Disaggregated Query Engine for Heterogenous Computational Environments. Performance Evaluation of Modified Best First Decreasing Algorithms for Dynamic Virtual Machine Placement in Cloud Computing Improving Few-Shot Image Classification with Self-supervised Learning Cloud Computing - CLOUD 2022 - 15th International Conference, Held as Part of the Services Conference Federation, SCF 2022, Honolulu, HI, USA, December 10-14, 2022, Proceedings Optimizing Cache Accesses with Tensor Memory Format Search for Transformers in TVM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1