{"title":"New insight into the role of MDMX in MDM2-mediated p53 degradation and anti-cancer drug development.","authors":"Jing Yang, Yanping Zhang","doi":"10.18632/oncoscience.542","DOIUrl":null,"url":null,"abstract":"<p><p>Inactivation of the tumor suppressor p53 has been generally accepted as a hallmark of tumor. MDM2 and MDMX, the two closely related proteins are considered to be critical for negatively regulating p53 activity through inhibitory binding to and post-translational modification of the p53 protein. We have demonstrated that MDMX facilitates MDM2-mediated p53 ubiquitination and degradation via recruitment of the ubiquitin-conjugating enzyme UbcH5c to the MDM2-MDMX heterooligomers. Here, we discuss our new findings from genetically engineered mouse models and a potential therapeutic strategy.</p>","PeriodicalId":19508,"journal":{"name":"Oncoscience","volume":"8 ","pages":"94-96"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncoscience.542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Inactivation of the tumor suppressor p53 has been generally accepted as a hallmark of tumor. MDM2 and MDMX, the two closely related proteins are considered to be critical for negatively regulating p53 activity through inhibitory binding to and post-translational modification of the p53 protein. We have demonstrated that MDMX facilitates MDM2-mediated p53 ubiquitination and degradation via recruitment of the ubiquitin-conjugating enzyme UbcH5c to the MDM2-MDMX heterooligomers. Here, we discuss our new findings from genetically engineered mouse models and a potential therapeutic strategy.