Alessia Bauleo, Alberto Montesanto, Vincenza Pace, Rossella Brando, Laura De Stefano, Domenica Puntorieri, Luca Cento, Sara Loddo, Chiara Calacci, Antonio Novelli, Elena Falcone
{"title":"Rare copy number variants in ASTN2 gene in patients with neurodevelopmental disorders.","authors":"Alessia Bauleo, Alberto Montesanto, Vincenza Pace, Rossella Brando, Laura De Stefano, Domenica Puntorieri, Luca Cento, Sara Loddo, Chiara Calacci, Antonio Novelli, Elena Falcone","doi":"10.1097/YPG.0000000000000296","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In humans the normal development of cortical regions depends on the complex interactions between a number of proteins that promote the migrations of neuronal precursors from germinal zones and assembly into neuronal laminae. ASTN2 is one of the proteins implicated in such a complex process. Recently it has been observed that ASTN2 also regulates the surface expression of multiple synaptic proteins resulting in a modulation of synaptic activity. Several rare copy number variants (CNVs) in ASTN2 gene were identified in patients with neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASD), attention deficit-hyperactivity disorders and intellectual disability.</p><p><strong>Methods: </strong>By using comparative genomic hybridization array technology, we analyzed the genomic profiles of five patients of three unrelated families with NDDs. Clinical diagnosis of ASD was established according to the Statistical Manual of Mental Disorders, Fifth Edition (APA 2013) criteria.</p><p><strong>Results: </strong>We identified new rare CNVs encompassing ASTN2 gene in three unrelated families with different clinical phenotypes of NDDs. In particular, we identified a deletion of about 70 Kb encompassing intron 19, a 186 Kb duplication encompassing the sequence between the 5'-end and the first intron of the gene and a 205 Kb deletion encompassing exons 6-11.</p><p><strong>Conclusion: </strong>The CNVs reported here involve regions not usually disrupted in patients with NDDs with two of them affecting only the expression of the long isoforms. Further studies will be needed to analyze the impact of these CNVs on gene expression regulation and to better understand their impact on the protein function.</p>","PeriodicalId":20734,"journal":{"name":"Psychiatric Genetics","volume":"31 6","pages":"239-245"},"PeriodicalIF":1.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatric Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/YPG.0000000000000296","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 4
Abstract
Introduction: In humans the normal development of cortical regions depends on the complex interactions between a number of proteins that promote the migrations of neuronal precursors from germinal zones and assembly into neuronal laminae. ASTN2 is one of the proteins implicated in such a complex process. Recently it has been observed that ASTN2 also regulates the surface expression of multiple synaptic proteins resulting in a modulation of synaptic activity. Several rare copy number variants (CNVs) in ASTN2 gene were identified in patients with neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASD), attention deficit-hyperactivity disorders and intellectual disability.
Methods: By using comparative genomic hybridization array technology, we analyzed the genomic profiles of five patients of three unrelated families with NDDs. Clinical diagnosis of ASD was established according to the Statistical Manual of Mental Disorders, Fifth Edition (APA 2013) criteria.
Results: We identified new rare CNVs encompassing ASTN2 gene in three unrelated families with different clinical phenotypes of NDDs. In particular, we identified a deletion of about 70 Kb encompassing intron 19, a 186 Kb duplication encompassing the sequence between the 5'-end and the first intron of the gene and a 205 Kb deletion encompassing exons 6-11.
Conclusion: The CNVs reported here involve regions not usually disrupted in patients with NDDs with two of them affecting only the expression of the long isoforms. Further studies will be needed to analyze the impact of these CNVs on gene expression regulation and to better understand their impact on the protein function.
期刊介绍:
The journal aims to publish papers which bring together clinical observations, psychological and behavioural abnormalities and genetic data. All papers are fully refereed.
Psychiatric Genetics is also a forum for reporting new approaches to genetic research in psychiatry and neurology utilizing novel techniques or methodologies. Psychiatric Genetics publishes original Research Reports dealing with inherited factors involved in psychiatric and neurological disorders. This encompasses gene localization and chromosome markers, changes in neuronal gene expression related to psychiatric disease, linkage genetics analyses, family, twin and adoption studies, and genetically based animal models of neuropsychiatric disease. The journal covers areas such as molecular neurobiology and molecular genetics relevant to mental illness.
Reviews of the literature and Commentaries in areas of current interest will be considered for publication. Reviews and Commentaries in areas outside psychiatric genetics, but of interest and importance to Psychiatric Genetics, will also be considered.
Psychiatric Genetics also publishes Book Reviews, Brief Reports and Conference Reports.