{"title":"PATH: An interactive web platform for analysis of time-course high-dimensional genomic data.","authors":"Yuping Zhang, Yang Chen, Zhengqing Ouyang","doi":"10.1504/ijcbdd.2020.10036399","DOIUrl":null,"url":null,"abstract":"<p><p>Discovering patterns in time-course genomic data can provide insights on the dynamics of biological systems in health and disease. Here, we present a Platform for Analysis of Time-course High-dimensional data (PATH) with applications in genomics research. This web application provides a user-friendly interface with interactive data visualisation, dimension reduction, pattern discovery, and feature selection based on the principal trend analysis (PTA). Furthermore, the web application enables interactive and integrative analysis of time-course high-dimensional data based on the Joint PTA. The utilities of PATH are demonstrated through simulated and real examples, and the comparison with classical time-course data analysis methods such as the functional principal component analysis. PATH is freely accessible at https://ouyanglab.shinyapps.io/PATH/.</p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"13 5-6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389186/pdf/nihms-1715616.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcbdd.2020.10036399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Discovering patterns in time-course genomic data can provide insights on the dynamics of biological systems in health and disease. Here, we present a Platform for Analysis of Time-course High-dimensional data (PATH) with applications in genomics research. This web application provides a user-friendly interface with interactive data visualisation, dimension reduction, pattern discovery, and feature selection based on the principal trend analysis (PTA). Furthermore, the web application enables interactive and integrative analysis of time-course high-dimensional data based on the Joint PTA. The utilities of PATH are demonstrated through simulated and real examples, and the comparison with classical time-course data analysis methods such as the functional principal component analysis. PATH is freely accessible at https://ouyanglab.shinyapps.io/PATH/.