Min Yang, Yong Luo, Xin-Zhong Hao, Ming-Yang Guo, Wan Li, Yong-He Hu
{"title":"Effects of high temperature and high humidity stress on the negative feedback regulation of hippocampus on HPA axis in rats.","authors":"Min Yang, Yong Luo, Xin-Zhong Hao, Ming-Yang Guo, Wan Li, Yong-He Hu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the negative feedback regulation from rat hippocampus on hypothalamic-pituitary-adrenal (HPA) axis under high temperature and high humidity stress.</p><p><strong>Methods: </strong>Thirty (30) SD male rats were randomly divided into three groups: control group, high temperature and high humidity group, drug intervention group. The rats in control group were kept in the environment with temperature of 24 ± 1°C and humidity of 50 ± 5%, without any stimulation. The rats in the other groups were exposed to high temperature and high humidity environment for 4 h each day, with temperature of 35±1 °C and humidity of 85±5%. The rats in drug intervention group were intragastrically administered with the glucocorticoid receptor antagonist mifepristone. The administration was continued for 3 weeks. After 3 weeks, the serum levels of corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were detected by ELISA.The protein and mRNA levels of corticosteroid receptors (MR), glucocorticoid receptors (GR) and inducible nitric oxide synthase (iNOS), transient receptor potential vanilloid 1 (TRPV1) and 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in hippocampus were determined by immunohistochemistry and in situ hybridization, respectively. The apoptosis of hippocampal cells was examined with TUNEL apoptosis staining.</p><p><strong>Results: </strong>After stimulation with high temperature and high humidity stress for 3 weeks, the serum levels of CRH, ACTH and CORT in the high temperature and high humidity group were significantly increased compared to that of control group; the levels of these indicators in drug intervention group were decreased compared to that of high temperature and high humidity group (P<0.05). In high temperature and high humidity group, the protein and mRNA levels of MR, GR, iNOS in hippocampus of rats were significantly increased compared with that of control group (p<0.05); and the levels of these indicators in drug intervention group were lower than that of high temperature and high humidity group (p<0.05). In addition, compared with the control group, the TRPV1 protein level in hippocampus of rats in high temperature and high humidity group was not significantly changed (p>0.05), while the TRPV1 mRNA level was significantly increased (p<0.05). Neither the protein nor mRNA levels of 11β-HSD1 showed significant difference compared to control group (p>0.05). The apoptosis of hippocampus cells in the high temperature and high humidity group was significantly increased compared with that of control group (p<0.05); and it was lower in the drug intervention group than that of in high temperature and high humidity group while the result was not significant (p>0.05).</p><p><strong>Conclusion: </strong>High temperature and high humidity stress may up-regulate the local expression of iNOS in hippocampus and decrease the activity of glucocorticoids (GC) receptor, then the effective binding of GR-GC would be decreased and the negative feedback regulation of hippocampus on HPA axis would be inhibited. The glucocorticoid receptor antagonist can improve the negative feedback regulation of hippocampus on HPA axis in rat.</p>","PeriodicalId":19098,"journal":{"name":"Neuro endocrinology letters","volume":"42 5","pages":"312-320"},"PeriodicalIF":0.6000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro endocrinology letters","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To investigate the negative feedback regulation from rat hippocampus on hypothalamic-pituitary-adrenal (HPA) axis under high temperature and high humidity stress.
Methods: Thirty (30) SD male rats were randomly divided into three groups: control group, high temperature and high humidity group, drug intervention group. The rats in control group were kept in the environment with temperature of 24 ± 1°C and humidity of 50 ± 5%, without any stimulation. The rats in the other groups were exposed to high temperature and high humidity environment for 4 h each day, with temperature of 35±1 °C and humidity of 85±5%. The rats in drug intervention group were intragastrically administered with the glucocorticoid receptor antagonist mifepristone. The administration was continued for 3 weeks. After 3 weeks, the serum levels of corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were detected by ELISA.The protein and mRNA levels of corticosteroid receptors (MR), glucocorticoid receptors (GR) and inducible nitric oxide synthase (iNOS), transient receptor potential vanilloid 1 (TRPV1) and 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in hippocampus were determined by immunohistochemistry and in situ hybridization, respectively. The apoptosis of hippocampal cells was examined with TUNEL apoptosis staining.
Results: After stimulation with high temperature and high humidity stress for 3 weeks, the serum levels of CRH, ACTH and CORT in the high temperature and high humidity group were significantly increased compared to that of control group; the levels of these indicators in drug intervention group were decreased compared to that of high temperature and high humidity group (P<0.05). In high temperature and high humidity group, the protein and mRNA levels of MR, GR, iNOS in hippocampus of rats were significantly increased compared with that of control group (p<0.05); and the levels of these indicators in drug intervention group were lower than that of high temperature and high humidity group (p<0.05). In addition, compared with the control group, the TRPV1 protein level in hippocampus of rats in high temperature and high humidity group was not significantly changed (p>0.05), while the TRPV1 mRNA level was significantly increased (p<0.05). Neither the protein nor mRNA levels of 11β-HSD1 showed significant difference compared to control group (p>0.05). The apoptosis of hippocampus cells in the high temperature and high humidity group was significantly increased compared with that of control group (p<0.05); and it was lower in the drug intervention group than that of in high temperature and high humidity group while the result was not significant (p>0.05).
Conclusion: High temperature and high humidity stress may up-regulate the local expression of iNOS in hippocampus and decrease the activity of glucocorticoids (GC) receptor, then the effective binding of GR-GC would be decreased and the negative feedback regulation of hippocampus on HPA axis would be inhibited. The glucocorticoid receptor antagonist can improve the negative feedback regulation of hippocampus on HPA axis in rat.
期刊介绍:
Neuroendocrinology Letters is an international, peer-reviewed interdisciplinary journal covering the fields of Neuroendocrinology, Neuroscience, Neurophysiology, Neuropsychopharmacology, Psychoneuroimmunology, Reproductive Medicine, Chronobiology, Human Ethology and related fields for RAPID publication of Original Papers, Review Articles, State-of-the-art, Clinical Reports and other contributions from all the fields covered by Neuroendocrinology
Letters.
Papers from both basic research (methodology, molecular and cellular biology, anatomy, histology, biology, embryology, teratology, normal and pathological physiology, biophysics, pharmacology, pathology and experimental pathology, biochemistry, neurochemistry, enzymology, chronobiology, receptor studies, endocrinology, immunology and neuroimmunology, animal physiology, animal breeding and ethology, human ethology, psychology and others) and from clinical research (neurology, psychiatry and child psychiatry, obstetrics and gynecology, pediatrics, endocrinology, immunology, cardiovascular studies, internal medicine, oncology and others) will be considered.
The Journal publishes Original papers and Review Articles. Brief reports, Special Communications, proved they are based on adequate experimental evidence, Clinical Studies, Case Reports, Commentaries, Discussions, Letters to the Editor (correspondence column), Book Reviews, Congress Reports and other categories of articles (philosophy, art, social issues, medical and health policies, biomedical history, etc.) will be taken under consideration.