Parag M Tamhankar, Lakshmi Vasudevan, Pratima Kondurkar, Sarfaraj Niazi, Rita Christopher, Dhaval Solanki, Pooja Dholakia, Mamta Muranjan, Mahesh Kamate, Umesh Kalane, Jayesh Sheth, Vasundhara Tamhankar, Reena Gulati, Madhavi Vasikarla, Sumita Danda, Shaik M Naushad, Katta M Girisha, Shekhar Patil
{"title":"Clinical Characteristics, Molecular Profile, and Outcomes in Indian Patients with Glutaric Aciduria Type 1.","authors":"Parag M Tamhankar, Lakshmi Vasudevan, Pratima Kondurkar, Sarfaraj Niazi, Rita Christopher, Dhaval Solanki, Pooja Dholakia, Mamta Muranjan, Mahesh Kamate, Umesh Kalane, Jayesh Sheth, Vasundhara Tamhankar, Reena Gulati, Madhavi Vasikarla, Sumita Danda, Shaik M Naushad, Katta M Girisha, Shekhar Patil","doi":"10.1055/s-0040-1715528","DOIUrl":null,"url":null,"abstract":"<p><p>Glutaric acidemia type 1 (GA-1, OMIM 231670) is an autosomal recessive inborn error of metabolism caused by the deficiency of glutaryl-coenzyme A (CoA) dehydrogenase with most children presenting in infancy with encephalopathy, dystonia, and macrocephaly. In this article, we presented the clinical characteristics, molecular profile, and outcomes in 29 unrelated families with affected children (30 cases total). The mean age at onset of illness was 10 months (±14.58), whereas the mean age at referral for molecular diagnosis was 29.44 months (±28.11). Patients were residents of nine different states of India. Clinical presentation varied from acute encephalitis followed by neuroregression and chronic/insidious developmental delay. Neurological sequelae varied from asymptomatic (no sequelae, 2 patients) to moderate (5 patients) and severe (23 patients) sequelae. All patients underwent blood tandem mass spectrometry (TMS on dried blood spots) and/or urine gas chromatography mass spectrometry (GCMS). Neuroimaging demonstrated batwing appearance in 95% cases. Sanger's sequencing of <i>GCDH</i> , covering all exons and exon-intron boundaries, was performed for all patients. Variants identified include 15 novel coding variants: p.Met100Thr, p.Gly107Ser, p.Leu179Val, p.Pro217Ser, p. Phe236Leufs*107, p.Ser255Pro, p.Met266Leufs*2, p.Gln330Ter, p.Thr344Ile, p.Leu345Pro, p.Lys377Arg, p.Leu424Pro, p.Asn373Lys, p.Lys377Arg, p.Asn392Metfs*9, and nine known genetic variants such as p.Arg128Gln, p.Leu179Arg, p.Trp225Ter, p.Met339Val, p.Gly354Ser, p.Arg402Gln, p.Arg402Trp, p.His403Tyr, and p.Ala433Val (Ensembl transcript ID: ENST00000222214). Using in silico analysis, genetic variants were shown to be affecting the residues responsible for homotetramer formation of the glutaryl-CoA dehydrogenase protein. Treatment included oral carnitine, riboflavin, protein-restricted diet, lysine-deficient special formulae, and management of acute crises with intravenous glucose and hydration. However, the mortality (9/30, 27.58%) and morbidity was high in our cohort with only two patients affording the diet. Our study is the largest multicentric, genetic variant-proven series of glutaric aciduria type 1 from India till date.</p>","PeriodicalId":16695,"journal":{"name":"Journal of pediatric genetics","volume":"10 3","pages":"213-221"},"PeriodicalIF":0.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1055/s-0040-1715528","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pediatric genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0040-1715528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 4
Abstract
Glutaric acidemia type 1 (GA-1, OMIM 231670) is an autosomal recessive inborn error of metabolism caused by the deficiency of glutaryl-coenzyme A (CoA) dehydrogenase with most children presenting in infancy with encephalopathy, dystonia, and macrocephaly. In this article, we presented the clinical characteristics, molecular profile, and outcomes in 29 unrelated families with affected children (30 cases total). The mean age at onset of illness was 10 months (±14.58), whereas the mean age at referral for molecular diagnosis was 29.44 months (±28.11). Patients were residents of nine different states of India. Clinical presentation varied from acute encephalitis followed by neuroregression and chronic/insidious developmental delay. Neurological sequelae varied from asymptomatic (no sequelae, 2 patients) to moderate (5 patients) and severe (23 patients) sequelae. All patients underwent blood tandem mass spectrometry (TMS on dried blood spots) and/or urine gas chromatography mass spectrometry (GCMS). Neuroimaging demonstrated batwing appearance in 95% cases. Sanger's sequencing of GCDH , covering all exons and exon-intron boundaries, was performed for all patients. Variants identified include 15 novel coding variants: p.Met100Thr, p.Gly107Ser, p.Leu179Val, p.Pro217Ser, p. Phe236Leufs*107, p.Ser255Pro, p.Met266Leufs*2, p.Gln330Ter, p.Thr344Ile, p.Leu345Pro, p.Lys377Arg, p.Leu424Pro, p.Asn373Lys, p.Lys377Arg, p.Asn392Metfs*9, and nine known genetic variants such as p.Arg128Gln, p.Leu179Arg, p.Trp225Ter, p.Met339Val, p.Gly354Ser, p.Arg402Gln, p.Arg402Trp, p.His403Tyr, and p.Ala433Val (Ensembl transcript ID: ENST00000222214). Using in silico analysis, genetic variants were shown to be affecting the residues responsible for homotetramer formation of the glutaryl-CoA dehydrogenase protein. Treatment included oral carnitine, riboflavin, protein-restricted diet, lysine-deficient special formulae, and management of acute crises with intravenous glucose and hydration. However, the mortality (9/30, 27.58%) and morbidity was high in our cohort with only two patients affording the diet. Our study is the largest multicentric, genetic variant-proven series of glutaric aciduria type 1 from India till date.
期刊介绍:
The Journal of Pediatric Genetics is an English multidisciplinary peer-reviewed international journal publishing articles on all aspects of genetics in childhood and of the genetics of experimental models. These topics include clinical genetics, molecular genetics, biochemical genetics, medical genetics, dysmorphology, teratology, genetic counselling, genetic engineering, formal genetics, neuropsychiatric genetics, behavioral genetics, community genetics, cytogenetics, hereditary or syndromic cancer genetics, genetic mapping, reproductive genetics, fetal pathology and prenatal diagnosis, multiple congenital anomaly syndromes, and molecular embryology of birth defects. Journal of Pediatric Genetics provides an in-depth update on new subjects and current comprehensive coverage of the latest techniques used in the diagnosis of childhood genetics. Journal of Pediatric Genetics encourages submissions from all authors throughout the world. The following articles will be considered for publication: editorials, original and review articles, short report, rapid communications, case reports, letters to the editor, and book reviews. The aim of the journal is to share and disseminate knowledge between all disciplines in the field of pediatric genetics. This journal is a publication of the World Pediatric Society: http://www.worldpediatricsociety.org/ The Journal of Pediatric Genetics is available in print and online. Articles published ahead of print are available via the eFirst service on the Thieme E-Journals platform.