17β-Estradiol Attenuates Intracerebral Hemorrhage-Induced Blood-Brain Barrier Injury and Oxidative Stress Through SRC3-Mediated PI3K/Akt Signaling Pathway in a Mouse Model.
Han Xiao, Jianyang Liu, Jialin He, Ziwei Lan, Mingyang Deng, Zhiping Hu
{"title":"17β-Estradiol Attenuates Intracerebral Hemorrhage-Induced Blood-Brain Barrier Injury and Oxidative Stress Through SRC3-Mediated PI3K/Akt Signaling Pathway in a Mouse Model.","authors":"Han Xiao, Jianyang Liu, Jialin He, Ziwei Lan, Mingyang Deng, Zhiping Hu","doi":"10.1177/17590914211038443","DOIUrl":null,"url":null,"abstract":"<p><p>Estrogen is neuroprotective in brain injury models, and steroid receptor cofactor 3 (SRC3) mediates estrogen signaling. We aimed to investigate whether and how SRC3 is involved in the neuroprotective effects of 17ß-estradiol (E2) in a mouse model of intracerebral hemorrhage (ICH). Ovariectomized female mice were treated with E2 after autologous blood injection-induced ICH. Brain damage was assessed by neurological deficit score, brain water content, and oxidative stress levels. Blood-brain barrier (BBB) integrity was evaluated by Evan's blue extravasation and claudin-5, ZO-1, and occludin levels. SRC3 expression and PI3K/Akt signaling pathway were examined in ICH mice treated with E2. The effect of SRC3 on E2-mediated neuroprotection was determined by examining neurological outcomes in SRC3-deficient mice undergone ICH and E2 treatment. We found that E2 alleviated ICH-induced brain edema and neurological deficits, protected BBB integrity, and suppressed oxidative stress. E2 enhanced SRC3 expression and PI3K-/Akt signaling pathway. SRC3 deficiency abolished the protective effects of E2 on ICH-induced neurological deficits, brain edema, and BBB integrity. Our results suggest that E2 suppresses ICH-induced brain injury and SRC3 plays a critical role in E2-mediated neuroprotection.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8a/0b/10.1177_17590914211038443.PMC8580490.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASN NEURO","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17590914211038443","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 4
Abstract
Estrogen is neuroprotective in brain injury models, and steroid receptor cofactor 3 (SRC3) mediates estrogen signaling. We aimed to investigate whether and how SRC3 is involved in the neuroprotective effects of 17ß-estradiol (E2) in a mouse model of intracerebral hemorrhage (ICH). Ovariectomized female mice were treated with E2 after autologous blood injection-induced ICH. Brain damage was assessed by neurological deficit score, brain water content, and oxidative stress levels. Blood-brain barrier (BBB) integrity was evaluated by Evan's blue extravasation and claudin-5, ZO-1, and occludin levels. SRC3 expression and PI3K/Akt signaling pathway were examined in ICH mice treated with E2. The effect of SRC3 on E2-mediated neuroprotection was determined by examining neurological outcomes in SRC3-deficient mice undergone ICH and E2 treatment. We found that E2 alleviated ICH-induced brain edema and neurological deficits, protected BBB integrity, and suppressed oxidative stress. E2 enhanced SRC3 expression and PI3K-/Akt signaling pathway. SRC3 deficiency abolished the protective effects of E2 on ICH-induced neurological deficits, brain edema, and BBB integrity. Our results suggest that E2 suppresses ICH-induced brain injury and SRC3 plays a critical role in E2-mediated neuroprotection.
期刊介绍:
ASN NEURO is an open access, peer-reviewed journal uniquely positioned to provide investigators with the most recent advances across the breadth of the cellular and molecular neurosciences. The official journal of the American Society for Neurochemistry, ASN NEURO is dedicated to the promotion, support, and facilitation of communication among cellular and molecular neuroscientists of all specializations.