The Potential of Pancreatic Organoids for Diabetes Research and Therapy.

IF 1.9 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Islets Pub Date : 2021-09-03 Epub Date: 2021-09-15 DOI:10.1080/19382014.2021.1941555
Katerina Bittenglova, David Habart, Frantisek Saudek, Tomas Koblas
{"title":"The Potential of Pancreatic Organoids for Diabetes Research and Therapy.","authors":"Katerina Bittenglova, David Habart, Frantisek Saudek, Tomas Koblas","doi":"10.1080/19382014.2021.1941555","DOIUrl":null,"url":null,"abstract":"<p><p>The success of clinical transplantation of pancreas or isolated pancreatic islets supports the concept of cell-based cure for diabetes. One limitation is the shortage of cadaver human pancreata. The demand-supply gap could potentially be bridged by harnessing the self-renewal capacity of stem cells. Pluripotent stem cells and adult pancreatic stem cells have been explored as possible cell sources. Recently, a system for long-term culture of proposed adult pancreatic stem cells in a form of organoids was developed. Generated organoids partially mimic the architecture and cell-type composition of pancreatic tissue. Here, we review the attempts over the past decade, to utilize the organoid cell culture principles in order to identify, expand, and differentiate the adult pancreatic stem cells from different compartments of mouse and human pancreata. The development of the culture conditions, effects of specific growth factors and small molecules is discussed. The potential utility of the adult pancreatic stem cells is considered in the context of other cell sources.</p>","PeriodicalId":14671,"journal":{"name":"Islets","volume":"13 5-6","pages":"85-105"},"PeriodicalIF":1.9000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528407/pdf/KISL_13_1941555.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Islets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19382014.2021.1941555","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The success of clinical transplantation of pancreas or isolated pancreatic islets supports the concept of cell-based cure for diabetes. One limitation is the shortage of cadaver human pancreata. The demand-supply gap could potentially be bridged by harnessing the self-renewal capacity of stem cells. Pluripotent stem cells and adult pancreatic stem cells have been explored as possible cell sources. Recently, a system for long-term culture of proposed adult pancreatic stem cells in a form of organoids was developed. Generated organoids partially mimic the architecture and cell-type composition of pancreatic tissue. Here, we review the attempts over the past decade, to utilize the organoid cell culture principles in order to identify, expand, and differentiate the adult pancreatic stem cells from different compartments of mouse and human pancreata. The development of the culture conditions, effects of specific growth factors and small molecules is discussed. The potential utility of the adult pancreatic stem cells is considered in the context of other cell sources.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胰腺器官组织用于糖尿病研究和治疗的潜力
临床移植胰腺或分离胰岛的成功支持了以细胞为基础治疗糖尿病的概念。一个限制因素是尸体人类胰腺的短缺。利用干细胞的自我更新能力有可能弥补供需缺口。多能干细胞和成人胰腺干细胞已被探索为可能的细胞来源。最近,人们开发出了一种以器官组织形式长期培养成体胰腺干细胞的系统。生成的器官组织部分模拟了胰腺组织的结构和细胞类型组成。在此,我们回顾了过去十年中利用类器官细胞培养原理,从小鼠和人类胰腺的不同区域中识别、扩增和分化成人胰腺干细胞的尝试。本文讨论了培养条件的发展、特定生长因子和小分子的影响。在考虑其他细胞来源的情况下,还考虑了成体胰腺干细胞的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Islets
Islets ENDOCRINOLOGY & METABOLISM-
CiteScore
3.30
自引率
4.50%
发文量
10
审稿时长
>12 weeks
期刊介绍: Islets is the first international, peer-reviewed research journal dedicated to islet biology. Islets publishes high-quality clinical and experimental research into the physiology and pathology of the islets of Langerhans. In addition to original research manuscripts, Islets is the leading source for cutting-edge Perspectives, Reviews and Commentaries. Our goal is to foster communication and a rapid exchange of information through timely publication of important results using print as well as electronic formats.
期刊最新文献
3D evaluation of the extracellular matrix of hypoxic pancreatic islets using light sheet fluorescence microscopy. Serum from pregnant donors induces human beta cell proliferation. Characterizing the effects of Dechlorane Plus on β-cells: a comparative study across models and species. Decreased islet amyloid polypeptide staining in the islets of insulinoma patients. Human research islet cell culture outcomes at the Alberta Diabetes Institute IsletCore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1