Cerebellar Dentate Connectivity across Adulthood: A Large-Scale Resting State Functional Connectivity Investigation.

Cerebral cortex communications Pub Date : 2021-08-10 eCollection Date: 2021-01-01 DOI:10.1093/texcom/tgab050
Jessica A Bernard, Hannah K Ballard, Trevor Bryan Jackson
{"title":"Cerebellar Dentate Connectivity across Adulthood: A Large-Scale Resting State Functional Connectivity Investigation.","authors":"Jessica A Bernard,&nbsp;Hannah K Ballard,&nbsp;Trevor Bryan Jackson","doi":"10.1093/texcom/tgab050","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebellar contributions to behavior in advanced age are of interest and importance, given its role in motor and cognitive performance. There are differences and declines in cerebellar structure in advanced age and cerebellar resting state connectivity is lower. However, the work on this area to date has focused on the cerebellar cortex. The deep cerebellar nuclei provide the primary cerebellar inputs and outputs to the cortex, as well as the spinal and vestibular systems. Dentate networks can be dissociated such that the dorsal region is associated with the motor cortex, whereas the ventral aspect is associated with the prefrontal cortex. However, whether dentato-thalamo-cortical networks differ across adulthood remains unknown. Here, using a large adult sample (<i>n</i> = 590) from the Cambridge Center for Ageing and Neuroscience, we investigated dentate connectivity across adulthood. We replicated past work showing dissociable resting state networks in the dorsal and ventral aspects of the dentate. In both seeds, we demonstrated that connectivity is lower with advanced age, indicating that connectivity differences extend beyond the cerebellar cortex. Finally, we demonstrated sex differences in dentate connectivity. This expands our understanding of cerebellar circuitry in advanced age and underscores the potential importance of this structure in age-related performance differences.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8436571/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/texcom/tgab050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Cerebellar contributions to behavior in advanced age are of interest and importance, given its role in motor and cognitive performance. There are differences and declines in cerebellar structure in advanced age and cerebellar resting state connectivity is lower. However, the work on this area to date has focused on the cerebellar cortex. The deep cerebellar nuclei provide the primary cerebellar inputs and outputs to the cortex, as well as the spinal and vestibular systems. Dentate networks can be dissociated such that the dorsal region is associated with the motor cortex, whereas the ventral aspect is associated with the prefrontal cortex. However, whether dentato-thalamo-cortical networks differ across adulthood remains unknown. Here, using a large adult sample (n = 590) from the Cambridge Center for Ageing and Neuroscience, we investigated dentate connectivity across adulthood. We replicated past work showing dissociable resting state networks in the dorsal and ventral aspects of the dentate. In both seeds, we demonstrated that connectivity is lower with advanced age, indicating that connectivity differences extend beyond the cerebellar cortex. Finally, we demonstrated sex differences in dentate connectivity. This expands our understanding of cerebellar circuitry in advanced age and underscores the potential importance of this structure in age-related performance differences.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
成年期小脑齿状体连通性:一项大型静息状态功能连通性调查。
考虑到小脑在运动和认知表现中的作用,它对老年行为的贡献是有趣和重要的。老年小脑结构存在差异和下降,小脑静息状态连通性降低。然而,迄今为止,这一领域的研究主要集中在小脑皮层。小脑深部核向皮层以及脊髓和前庭系统提供初级小脑输入和输出。齿状网络可以分离,这样背侧区域与运动皮层相关联,而腹侧区域与前额叶皮层相关联。然而,牙状齿-丘脑-皮层网络是否在成年期有所不同仍不得而知。在这里,我们使用了一个来自剑桥老龄化和神经科学中心的大型成人样本(n = 590),研究了整个成年人的齿状连通性。我们复制了过去的工作,显示齿状体的背侧和腹侧有可分离的静息状态网络。在这两种种子中,我们发现随着年龄的增长,连通性降低,这表明连通性差异超出了小脑皮层。最后,我们证明了齿状体连接的性别差异。这扩大了我们对老年小脑回路的理解,并强调了该结构在与年龄相关的表现差异中的潜在重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊最新文献
On the coupling and decoupling of mind wandering and perception: a shared metabolism account. Striatal correlates of Bayesian beliefs in self-efficacy in adolescents and their relation to mood and autonomy: a pilot study Frontal mechanisms underlying primate calls recognition by humans Detection and characterization of resting state functional networks in squirrel monkey brain. Methamphetamine enhances neural activation during anticipation of loss in the monetary incentive delay task.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1