An Optimized Zebrafish Nursery Feeding Regimen Improves Growth Rates and Labor Costs.

IF 1.4 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY Zebrafish Pub Date : 2021-12-01 Epub Date: 2021-09-20 DOI:10.1089/zeb.2021.0030
Toi A Collins, Shelby Cabrera, Emily Teets, Jami Shaffer, Bradley W Blaser
{"title":"An Optimized Zebrafish Nursery Feeding Regimen Improves Growth Rates and Labor Costs.","authors":"Toi A Collins,&nbsp;Shelby Cabrera,&nbsp;Emily Teets,&nbsp;Jami Shaffer,&nbsp;Bradley W Blaser","doi":"10.1089/zeb.2021.0030","DOIUrl":null,"url":null,"abstract":"<p><p>Setting nutritional standards for larval zebrafish (<i>Danio rerio</i>) that maximize growth, survival, and reproductive success is challenging. We evaluated the effects of different feeding regimens on larval zebrafish by comparing Gemma Micro 75 pelleted diet and live-type L rotifers (<i>Brachionus plicatilis</i>) in 3 feeding regimens starting at 9 days postfertilization (dpf): bolus feeding of live diet (BL), continuous feeding of live diet (CL), and pelleted diet (PD). Animals in the PD and CL groups were longer than the BL group at 4-5 weeks postfertilization. The PD group was also greater in body depth than both live diet groups. There was no significant difference in weight between the groups. There were also no significant differences in fecundity or sex ratios indicating that all feeding methods successfully promote growth of a useful breeding stock of fish. In addition, we quantified the equipment, consumable, and labor costs associated with these methods, and found that the PD regimen was superior to both live diet regimens. These data suggest that providing a high nutrient-density pelleted diet to larval and juvenile zebrafish is an effective means to increase early growth and to decrease cost and labor associated with nursery care.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8716471/pdf/zeb.2021.0030.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2021.0030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Setting nutritional standards for larval zebrafish (Danio rerio) that maximize growth, survival, and reproductive success is challenging. We evaluated the effects of different feeding regimens on larval zebrafish by comparing Gemma Micro 75 pelleted diet and live-type L rotifers (Brachionus plicatilis) in 3 feeding regimens starting at 9 days postfertilization (dpf): bolus feeding of live diet (BL), continuous feeding of live diet (CL), and pelleted diet (PD). Animals in the PD and CL groups were longer than the BL group at 4-5 weeks postfertilization. The PD group was also greater in body depth than both live diet groups. There was no significant difference in weight between the groups. There were also no significant differences in fecundity or sex ratios indicating that all feeding methods successfully promote growth of a useful breeding stock of fish. In addition, we quantified the equipment, consumable, and labor costs associated with these methods, and found that the PD regimen was superior to both live diet regimens. These data suggest that providing a high nutrient-density pelleted diet to larval and juvenile zebrafish is an effective means to increase early growth and to decrease cost and labor associated with nursery care.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化斑马鱼苗圃喂养方案提高生长速度和劳动力成本。
为斑马鱼幼鱼(Danio rerio)设定营养标准以最大限度地提高其生长、存活和繁殖成功率是一项具有挑战性的工作。本研究通过比较Gemma Micro - 75颗粒饲料和活体L型轮虫(Brachionus plicatilis)在受精后第9天(dpf)开始的3种饲喂方案(活体饲料(BL)、活体饲料连续饲喂(CL)和颗粒饲料(PD)),评估了不同饲喂方案对斑马鱼幼鱼的影响。PD组和CL组动物在受精后4-5周的寿命长于BL组。PD组的身体深度也大于两个活食组。两组之间的体重没有显著差异。在繁殖力和性别比例上也没有显著差异,这表明所有饲养方法都成功地促进了有用种鱼的生长。此外,我们量化了与这些方法相关的设备、消耗品和人工成本,发现PD方案优于两种生活饮食方案。这些数据表明,为斑马鱼幼鱼提供高营养密度的颗粒饲料是促进早期生长和减少与苗圃护理相关的成本和劳动力的有效手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Zebrafish
Zebrafish DEVELOPMENTAL BIOLOGY-ZOOLOGY
CiteScore
3.60
自引率
5.00%
发文量
29
审稿时长
3 months
期刊介绍: Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease. Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage. Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community. TechnoFish features two types of articles: TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community Zebrafish coverage includes: Comparative genomics and evolution Molecular/cellular mechanisms of cell growth Genetic analysis of embryogenesis and disease Toxicological and infectious disease models Models for neurological disorders and aging New methods, tools, and experimental approaches Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.
期刊最新文献
Fish in a Dish: Using Zebrafish in Authentic Science Research Experiences for Under-represented High School Students from West Virginia. Novel Development of Magnetic Resonance Imaging to Quantify the Structural Anatomic Growth of Diverse Organs in Adult and Mutant Zebrafish. Zebrafish (Danio rerio) Gynogenetic Production by Heat Shock: Comparison Between Mitotic and Meiotic Treatment. Curcumin-Encapsulated Nanomicelles Promote Tissue Regeneration in Zebrafish Eleutheroembryo. Incorporating Primer Amplification Efficiencies in Quantitative Reverse Transcription Polymerase Chain Reaction Experiments; Considerations for Differential Gene Expression Analyses in Zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1