Plant programmed cell death meets auxin signalling.

IF 5.5 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY FEBS Journal Pub Date : 2022-04-01 Epub Date: 2021-10-25 DOI:10.1111/febs.16210
Joanna Kacprzyk, Rory Burke, Johanna Schwarze, Paul F McCabe
{"title":"Plant programmed cell death meets auxin signalling.","authors":"Joanna Kacprzyk,&nbsp;Rory Burke,&nbsp;Johanna Schwarze,&nbsp;Paul F McCabe","doi":"10.1111/febs.16210","DOIUrl":null,"url":null,"abstract":"<p><p>Both auxin signalling and programmed cell death (PCD) are essential components of a normally functioning plant. Auxin underpins plant growth and development, as well as regulating plant defences against environmental stresses. PCD, a genetically controlled pathway for selective elimination of redundant, damaged or infected cells, is also a key element of many developmental processes and stress response mechanisms in plants. An increasing body of evidence suggests that auxin signalling and PCD regulation are often connected. While generally auxin appears to suppress cell death, it has also been shown to promote PCD events, most likely via stimulation of ethylene biosynthesis. Intriguingly, certain cells undergoing PCD have also been suggested to control the distribution of auxin in plant tissues, by either releasing a burst of auxin or creating an anatomical barrier to auxin transport and distribution. These recent findings indicate novel roles of localized PCD events in the context of plant development such as control of root architecture, or tissue regeneration following injury, and suggest exciting possibilities for incorporation of this knowledge into crop improvement strategies.</p>","PeriodicalId":12261,"journal":{"name":"FEBS Journal","volume":"289 7","pages":"1731-1745"},"PeriodicalIF":5.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/febs.16210","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 8

Abstract

Both auxin signalling and programmed cell death (PCD) are essential components of a normally functioning plant. Auxin underpins plant growth and development, as well as regulating plant defences against environmental stresses. PCD, a genetically controlled pathway for selective elimination of redundant, damaged or infected cells, is also a key element of many developmental processes and stress response mechanisms in plants. An increasing body of evidence suggests that auxin signalling and PCD regulation are often connected. While generally auxin appears to suppress cell death, it has also been shown to promote PCD events, most likely via stimulation of ethylene biosynthesis. Intriguingly, certain cells undergoing PCD have also been suggested to control the distribution of auxin in plant tissues, by either releasing a burst of auxin or creating an anatomical barrier to auxin transport and distribution. These recent findings indicate novel roles of localized PCD events in the context of plant development such as control of root architecture, or tissue regeneration following injury, and suggest exciting possibilities for incorporation of this knowledge into crop improvement strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物细胞程序性死亡与生长素信号传导相结合。
生长素信号传导和程序性细胞死亡(PCD)都是植物正常功能的重要组成部分。生长素支持植物生长和发育,以及调节植物对环境胁迫的防御。PCD是一种基因控制的选择性消除多余、受损或感染细胞的途径,也是植物许多发育过程和胁迫反应机制的关键因素。越来越多的证据表明,生长素信号和PCD调节经常是联系在一起的。虽然通常生长素似乎抑制细胞死亡,但它也被证明促进PCD事件,最有可能是通过刺激乙烯生物合成。有趣的是,某些经历PCD的细胞也被认为通过释放生长素的爆发或创造生长素运输和分布的解剖屏障来控制植物组织中生长素的分布。这些最近的发现表明了局部PCD事件在植物发育中的新作用,如控制根构型或损伤后的组织再生,并提出了将这些知识纳入作物改良策略的令人兴奋的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FEBS Journal
FEBS Journal 生物-生化与分子生物学
CiteScore
11.70
自引率
1.90%
发文量
375
审稿时长
1 months
期刊介绍: The FEBS Journal is an international journal devoted to the rapid publication of full-length papers covering a wide range of topics in any area of the molecular life sciences. The criteria for acceptance are originality and high quality research, which will provide novel perspectives in a specific area of research, and will be of interest to our broad readership. The journal does not accept papers that describe the expression of specific genes and proteins or test the effect of a drug or reagent, without presenting any biological significance. Papers describing bioinformatics, modelling or structural studies of specific systems or molecules should include experimental data.
期刊最新文献
Autophagy and tumorigenesis. Migrasome biogenesis and functions. Nuclear speckles: dynamic hubs of gene expression regulation. Molecular mechanisms and biological roles of GOMED. Autophagy in the retinal pigment epithelium: a new vision and future challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1